/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.19 by dimitri, Wed Nov 19 06:49:32 2014 UTC revision 1.26 by dimitri, Fri Jun 5 15:21:36 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  
 mixing in a circumpolar channel. Ocean Modelling, submitted.  
 </li></ul>  
   
 <ul><li>  
2  M. Azaneu, R. Kerr, and M. Mata,  M. Azaneu, R. Kerr, and M. Mata,
3  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
4  Assessment of the ECCO2 reanalysis on the representation of Antarctic  Assessment of the ECCO2 reanalysis on the representation of Antarctic
# Line 11  Bottom Water properties.</a> Ocean Sci. Line 6  Bottom Water properties.</a> Ocean Sci.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
 </li></ul>  
   
 <ul><li>  
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., 27, 4996-5018.  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the  
 origins of advective heat transport variability in the North Atlantic. J.  
 Clim., in revision.  
 </li></ul>  
   
 <ul><li>  
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
# Line 46  global eddy-permitting state estimate. < Line 26  global eddy-permitting state estimate. <
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  G. Danabasoglu, et al., 2014: North Atlantic simulations in  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
31  I: Mean states. Ocean Modelling, 73, 76-107.  </ul></li>
32    
33    <ul><li>
34    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36    states. Ocean Modelling, 73, 76-107.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42    Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45    </ul></li>
46    
47    <ul><li>
48    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49    melt rates in a general circulation model: velocity-dependent transfer and the
50    role of friction.  J. Geophys. Res., 119, 1765-1790.
51    </ul></li>
52    
53    <ul><li>
54  B. Dushaw, 2014:  B. Dushaw, 2014:
55  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
56  Assessing the horizontal refraction of ocean acoustic tomography  Assessing the horizontal refraction of ocean acoustic tomography
# Line 67  Deep-Sea Res. I, 86, 1-20. Line 66  Deep-Sea Res. I, 86, 1-20.
66  </li></ul>  </li></ul>
67    
68  <ul><li>  <ul><li>
69  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
70  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
71  Role of tides on the formation of the Antarctic Slope Front at the  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
72  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  </ul></li>
 </li></ul>  
73    
74  <ul><li>  <ul><li>
75  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
76  Quantifying the processes controlling intraseasonal mixed-layer  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
77  temperature variability in the tropical Indian  (Special Section on Planet Earth and Big Data), 36, S267–S295.
 Ocean. J. Geophys. Res., revised.  
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
81  D. Halpern, D. Menemenlis, and X. Wang,  V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin,
82  2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Fouest2014.pdf"> Modeling the
83  Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  impact of riverine DON removal by marine bacterioplankton on primary
84  Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  production in the Arctic Ocean.</a> Biogeosciences Discuss., 11, 16953–16992.
 Tech., in press.  
 </li></ul>  
   
 <ul><li>  
 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  
 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  
 (Special Section on Planet Earth and Big Data), submitted.  
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
89  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
90  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
91  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
92  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 112  model.</a> J. Mar. Syst., 129, 437-451. Line 102  model.</a> J. Mar. Syst., 129, 437-451.
102  </li></ul>  </li></ul>
103    
104  <ul><li>  <ul><li>
 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  
 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  
 2014: Quantifying the observability of CO2 flux uncertainty in  
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical  
 structure  of ocean pressure fluctuations with application  
 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  
 </li></ul>  
   
 <ul><li>  
105  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
106  level change.  J. Clim., 27, 824-834.  level change.  J. Clim., 27, 824-834.
107  </li></ul>  </li></ul>
# Line 137  in the Australian-Antarctic and Bellings Line 113  in the Australian-Antarctic and Bellings
113  </li></ul>  </li></ul>
114    
115  <ul><li>  <ul><li>
116    R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
117    of periodic intermediary flows on submarine melting of a Greenland glacier.
118    J. Geophys. Res., 119, 7078-7098.
119    </ul></li>
120    
121    <ul><li>
122  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
123  M. Schodlok, and A. Khazendar,  M. Schodlok, and A. Khazendar,
124  2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
# Line 146  to climate forcing for the next 50 years Line 128  to climate forcing for the next 50 years
128  </li></ul>  </li></ul>
129    
130  <ul><li>  <ul><li>
 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  
 deformation in a coupled ocean-sea ice model and in satellite remote  
 sensing data. J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
131  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
132  Estimating satellite salinity errors for assimilation of Aquarius and SMOS  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
133  data into climate models. J. Geophys. Res., 119.  data into climate models. J. Geophys. Res., 119.
134  </li></ul>  </li></ul>
135    
136  <ul><li>  <ul><li>
 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  
 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to  
 self-attraction and loading effects, J. Phys. Oceanogr., in revision.  
 </li></ul>  
   
 <ul><li>  
137  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
138  ocean variability, J. Phys. Oceanogr., 44, 944-966.  ocean variability, J. Phys. Oceanogr., 44, 944-966.
139  </li></ul>  </li></ul>
140    
141  <ul><li>  <ul><li>
142  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
143  Abyssal Ocean. J. Phys. Oceanogr., in press.  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 </li></ul>  
   
 <ul><li>  
 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  
 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
 </li></ul>  
   
 <ul><li>  
 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  
 and the general circulation: Partitioning wind, buoyancy forcing, and  
 irreversible mixing. J. Phys. Oceanogr., submitted.  
144  </li></ul>  </li></ul>

Legend:
Removed from v.1.19  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22