/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (show annotations) (download) (as text)
Wed Nov 19 06:49:32 2014 UTC (9 years, 5 months ago) by dimitri
Branch: MAIN
Changes since 1.18: +33 -3 lines
File MIME type: text/html
adding Rui's pubs

1 <ul><li>
2 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy
3 mixing in a circumpolar channel. Ocean Modelling, submitted.
4 </li></ul>
5
6 <ul><li>
7 M. Azaneu, R. Kerr, and M. Mata,
8 2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9 Assessment of the ECCO2 reanalysis on the representation of Antarctic
10 Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11 </li></ul>
12
13 <ul><li>
14 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15 K. Bowman, and H. Zhang, 2014:
16 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17 Green's Functions to initialize and adjust a global, eddying ocean
18 biogeochemistry general circulation model.</a> Ocean Modelling,
19 submitted.
20 </li></ul>
21
22 <ul><li>
23 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24 Low-frequency SST and upper-ocean heat content variability in the North
25 Atlantic. J. Clim., 27, 4996-5018.
26 </li></ul>
27
28 <ul><li>
29 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30 origins of advective heat transport variability in the North Atlantic. J.
31 Clim., in revision.
32 </li></ul>
33
34 <ul><li>
35 A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36 atmospheric reanalysis products for the Arctic Ocean and implications
37 for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38 </li></ul>
39
40 <ul><li>
41 R. Chen, G. Flerl, and C. Wunsch, 2014:
42 <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43 description of local and nonlocal eddy-mean flow interaction in a
44 global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45 2336-2352.
46 </li></ul>
47
48 <ul><li>
49 G. Danabasoglu, et al., 2014: North Atlantic simulations in
50 Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
51 I: Mean states. Ocean Modelling, 73, 76-107.
52 </li></ul>
53
54 <ul><li>
55 B. Dushaw, 2014:
56 <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
57 Assessing the horizontal refraction of ocean acoustic tomography
58 signals using high-resolution ocean state estimates.</a>
59 Acoust. Soc. Am., 136, 122.
60 </li></ul>
61
62 <ul><li>
63 B. Dushaw and D. Menemenlis, 2014:
64 <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
65 Antipodal acoustic thermometry: 1960, 2004.</a>
66 Deep-Sea Res. I, 86, 1-20.
67 </li></ul>
68
69 <ul><li>
70 M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
71 <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
72 Role of tides on the formation of the Antarctic Slope Front at the
73 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
74 </li></ul>
75
76 <ul><li>
77 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
78 Quantifying the processes controlling intraseasonal mixed-layer
79 temperature variability in the tropical Indian
80 Ocean. J. Geophys. Res., revised.
81 </li></ul>
82
83 <ul><li>
84 D. Halpern, D. Menemenlis, and X. Wang,
85 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
86 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
87 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
88 Tech., in press.
89 </li></ul>
90
91 <ul><li>
92 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
93 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
94 (Special Section on Planet Earth and Big Data), submitted.
95 </li></ul>
96
97 <ul><li>
98 J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
99 J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
100 2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
101 Carbon monitoring system flux estimation and attribution: Impact of
102 ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
103 sources and sinks.</a> Tellus B, 66, 22486.
104 </li></ul>
105
106 <ul><li>
107 M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
108 <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
109 Ocean state estimation from hydrography and velocity observations
110 during EIFEX with a regional biogeochemical ocean circulation
111 model.</a> J. Mar. Syst., 129, 437-451.
112 </li></ul>
113
114 <ul><li>
115 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
116 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
117 2014: Quantifying the observability of CO2 flux uncertainty in
118 atmospheric CO2 records using products from NASA's Carbon Monitoring
119 Flux Pilot Project. J. Geophys. Res., submitted.
120 </li></ul>
121
122 <ul><li>
123 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
124 structure of ocean pressure fluctuations with application
125 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
126 </li></ul>
127
128 <ul><li>
129 C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
130 level change. J. Clim., 27, 824-834.
131 </li></ul>
132
133 <ul><li>
134 R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
135 in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
136 44, 1456-1465.
137 </li></ul>
138
139 <ul><li>
140 H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141 M. Schodlok, and A. Khazendar,
142 2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
143 Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
144 to climate forcing for the next 50 years.</a> The Cryosphere, 8,
145 1699-1710.
146 </li></ul>
147
148 <ul><li>
149 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice
150 deformation in a coupled ocean-sea ice model and in satellite remote
151 sensing data. J. Geophys. Res., submitted.
152 </li></ul>
153
154 <ul><li>
155 N. Vinogradova, R. Ponte, I. Fukumori, and O. Wang, 2014:
156 Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157 data into climate models. J. Geophys. Res., 119.
158 </li></ul>
159
160 <ul><li>
161 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
162 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
163 self-attraction and loading effects, J. Phys. Oceanogr., in revision.
164 </li></ul>
165
166 <ul><li>
167 C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
168 ocean variability, J. Phys. Oceanogr., 44, 944-966.
169 </li></ul>
170
171 <ul><li>
172 C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
173 Abyssal Ocean. J. Phys. Oceanogr., in press.
174 </li></ul>
175
176 <ul><li>
177 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
178 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
179 vertical mixing using seasonally averaged observations from the
180 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
181 </li></ul>
182
183 <ul><li>
184 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
185 and the general circulation: Partitioning wind, buoyancy forcing, and
186 irreversible mixing. J. Phys. Oceanogr., submitted.
187 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22