/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.19 by dimitri, Wed Nov 19 06:49:32 2014 UTC revision 1.28 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  
 mixing in a circumpolar channel. Ocean Modelling, submitted.  
 </li></ul>  
   
 <ul><li>  
2  M. Azaneu, R. Kerr, and M. Mata,  M. Azaneu, R. Kerr, and M. Mata,
3  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">  2014: <a href="http://www.ocean-sci.net/10/923/2014/os-10-923-2014.html">
4  Assessment of the ECCO2 reanalysis on the representation of Antarctic  Assessment of the representation of Antarctic Bottom Water properties in the
5  Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.  ECCO2 reanalysis.</a> Ocean Sci., 10, 923-946.
 </li></ul>  
   
 <ul><li>  
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
# Line 26  Atlantic. J. Clim., 27, 4996-5018. Line 12  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the  
 origins of advective heat transport variability in the North Atlantic. J.  
 Clim., in revision.  
 </li></ul>  
   
 <ul><li>  
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
# Line 46  global eddy-permitting state estimate. < Line 26  global eddy-permitting state estimate. <
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  G. Danabasoglu, et al., 2014: North Atlantic simulations in  K. Childers, 2014:
30  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  <a href="http://ecco2.org/manuscripts/2015/Childers2014.pdf">
31  I: Mean states. Ocean Modelling, 73, 76-107.  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
32    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
33    </li></ul>
34    
35    <ul><li>
36    H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
37    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
38    </ul></li>
39    
40    <ul><li>
41    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
42    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
43    states. Ocean Modelling, 73, 76-107.
44    </li></ul>
45    
46    <ul><li>
47    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
48    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
49    Team Annual Report on Progress and Priorities. 162 pp. <a
50    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
51    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
52    </ul></li>
53    
54    <ul><li>
55    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
56    melt rates in a general circulation model: velocity-dependent transfer and the
57    role of friction.  J. Geophys. Res., 119, 1765-1790.
58    </ul></li>
59    
60    <ul><li>
61    T. Dotto, R. Kerr, M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt,
62    2014: <a href="http://www.ocean-sci.net/10/523/2014/os-10-523-2014.html">
63    Assessment of the structure and variability of Weddell Sea water masses in
64    distinct ocean reanalysis products.</a> Ocean Sci., 10, 523-546.
65  </li></ul>  </li></ul>
66    
67  <ul><li>  <ul><li>
# Line 67  Deep-Sea Res. I, 86, 1-20. Line 80  Deep-Sea Res. I, 86, 1-20.
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  S. Gao, T. Qu, and X. Nie, 2014: Mixed layer salinity budget in the tropical
84  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  Pacific Ocean estimated by a global GCM. J. Geophys. Res., 119, 8255-8270.
 Role of tides on the formation of the Antarctic Slope Front at the  
 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
89  Quantifying the processes controlling intraseasonal mixed-layer  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
90  temperature variability in the tropical Indian  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
91  Ocean. J. Geophys. Res., revised.  </ul></li>
 </li></ul>  
   
 <ul><li>  
 D. Halpern, D. Menemenlis, and X. Wang,  
 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  
 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  
 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  
 Tech., in press.  
 </li></ul>  
92    
93  <ul><li>  <ul><li>
94  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
95  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
96  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
97  </li></ul>  </li></ul>
98    
99  <ul><li>  <ul><li>
100  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
101  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
102  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
103  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
104  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 112  model.</a> J. Mar. Syst., 129, 437-451. Line 114  model.</a> J. Mar. Syst., 129, 437-451.
114  </li></ul>  </li></ul>
115    
116  <ul><li>  <ul><li>
117  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  C. Piecuch, I. Fukumori, R. Ponte and O. Wang, 2014: Vertical Structure of
118  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  Ocean Pressure Variations with Application to Satellite-Gravimetric
119  2014: Quantifying the observability of CO2 flux uncertainty in  Observations. Journal of Atmospheric and Oceanic Technology, 32, 603-613.
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
 </li></ul>  
   
 <ul><li>  
 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical  
 structure  of ocean pressure fluctuations with application  
 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
# Line 137  in the Australian-Antarctic and Bellings Line 131  in the Australian-Antarctic and Bellings
131  </li></ul>  </li></ul>
132    
133  <ul><li>  <ul><li>
134    R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
135    of periodic intermediary flows on submarine melting of a Greenland glacier.
136    J. Geophys. Res., 119, 7078-7098.
137    </ul></li>
138    
139    <ul><li>
140  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141  M. Schodlok, and A. Khazendar,  M. Schodlok, and A. Khazendar,
142  2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
# Line 146  to climate forcing for the next 50 years Line 146  to climate forcing for the next 50 years
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  S. Tett, T. Sherwin, A. Shravat, and O. Browne, 2014: How Much Has the North
150  deformation in a coupled ocean-sea ice model and in satellite remote  Atlantic Ocean Overturning Circulation Changed in the Last 50 Years? Journal
151  sensing data. J. Geophys. Res., submitted.  of Climate, 27, 6325-6342.
152  </li></ul>  </ul></li>
153    
154  <ul><li>  <ul><li>
155  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
156  Estimating satellite salinity errors for assimilation of Aquarius and SMOS  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157  data into climate models. J. Geophys. Res., 119.  data into climate models. J. Geophys. Res., 119, 4732-4744.
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  B. Webber, A. Matthews, K. Heywood, J. Kaiser and S. Schmidtko, 2014:
162  and J. Davis, 2014: Dynamic adjustment of the ocean circulation to  Seaglider observations of equatorial Indian Ocean Rossby waves associated with
163  self-attraction and loading effects, J. Phys. Oceanogr., in revision.  the Madden-Julian Oscillation. J. Geophys. Res., 119, 3714-3731.
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
# Line 170  ocean variability, J. Phys. Oceanogr., 4 Line 170  ocean variability, J. Phys. Oceanogr., 4
170    
171  <ul><li>  <ul><li>
172  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
173  Abyssal Ocean. J. Phys. Oceanogr., in press.  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 </li></ul>  
   
 <ul><li>  
 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  
 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
 </li></ul>  
   
 <ul><li>  
 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  
 and the general circulation: Partitioning wind, buoyancy forcing, and  
 irreversible mixing. J. Phys. Oceanogr., submitted.  
174  </li></ul>  </li></ul>

Legend:
Removed from v.1.19  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22