/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by dimitri, Wed Jul 2 20:14:24 2014 UTC revision 1.19 by dimitri, Wed Nov 19 06:49:32 2014 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Azaneu, R. Kerr, and M. Mata,
8  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Assessment of the ECCO2 reanalysis on the representation of Antarctic
10    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11    </li></ul>
12    
13    <ul><li>
14    H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15    K. Bowman, and H. Zhang, 2014:
16    <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17    Green's Functions to initialize and adjust a global, eddying ocean
18    biogeochemistry general circulation model.</a> Ocean Modelling,
19  submitted.  submitted.
20  </li></ul>  </li></ul>
21    
22  <ul><li>  <ul><li>
23  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
25  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018.
26    </li></ul>
27    
28    <ul><li>
29    M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30    origins of advective heat transport variability in the North Atlantic. J.
31    Clim., in revision.
32  </li></ul>  </li></ul>
33    
34  <ul><li>  <ul><li>
35  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
37  for uncertainties in air-sea fluxes, Journal of Climate, in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38    </li></ul>
39    
40    <ul><li>
41    R. Chen, G. Flerl, and C. Wunsch, 2014:
42    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43    description of local and nonlocal eddy-mean flow interaction in a
44    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45    2336-2352.
46  </li></ul>  </li></ul>
47    
48  <ul><li>  <ul><li>
# Line 44  Deep-Sea Res. I, 86, 1-20. Line 67  Deep-Sea Res. I, 86, 1-20.
67  </li></ul>  </li></ul>
68    
69  <ul><li>  <ul><li>
70    M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
71    <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
72    Role of tides on the formation of the Antarctic Slope Front at the
73    Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
74    </li></ul>
75    
76    <ul><li>
77    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
78    Quantifying the processes controlling intraseasonal mixed-layer
79    temperature variability in the tropical Indian
80    Ocean. J. Geophys. Res., revised.
81    </li></ul>
82    
83    <ul><li>
84    D. Halpern, D. Menemenlis, and X. Wang,
85    2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
86    Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
87    Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
88    Tech., in press.
89    </li></ul>
90    
91    <ul><li>
92  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
93  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
94  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), submitted.
# Line 67  model.</a> J. Mar. Syst., 129, 437-451. Line 112  model.</a> J. Mar. Syst., 129, 437-451.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
115    L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
116    C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
117    2014: Quantifying the observability of CO2 flux uncertainty in
118    atmospheric CO2 records using products from NASA's Carbon Monitoring
119    Flux Pilot Project. J. Geophys. Res., submitted.
120    </li></ul>
121    
122    <ul><li>
123    C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
124    structure  of ocean pressure fluctuations with application
125    to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
126    </li></ul>
127    
128    <ul><li>
129  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
130  level change.  J. Clim., in press.  level change.  J. Clim., 27, 824-834.
131  </li></ul>  </li></ul>
132    
133  <ul><li>  <ul><li>
134  M. Flexas, M. Schodlok, D. Menemenlis, L. Padman, and A. Orsi, 2014:  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
135  Role of tides on the formation of the Antarctic Slope Front at the  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
136  Weddell-Scotia Confluence. in prep.  44, 1456-1465.
137    </li></ul>
138    
139    <ul><li>
140    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141    M. Schodlok, and A. Khazendar,
142    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
143    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
144    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
145    1699-1710.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
# Line 84  sensing data. J. Geophys. Res., submitte Line 152  sensing data. J. Geophys. Res., submitte
152  </li></ul>  </li></ul>
153    
154  <ul><li>  <ul><li>
155    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
156    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157    data into climate models. J. Geophys. Res., 119.
158    </li></ul>
159    
160    <ul><li>
161    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
162    and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
163    self-attraction and loading effects, J. Phys. Oceanogr., in revision.
164    </li></ul>
165    
166    <ul><li>
167  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
168  ocean variability, J. Phys. Oceanogr., 44, 944-966.  ocean variability, J. Phys. Oceanogr., 44, 944-966.
169  </li></ul>  </li></ul>

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22