/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Wed May 13 12:54:45 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.7: +573 -55 lines
File MIME type: application/x-tex
add a good part of the model description of the ceaice-manuscripts (in
their original joint form) and adapt it for the manual.

1 % $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.7 2008/01/17 22:32:38 heimbach Exp $
2 % $Name: $
3
4 %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5 %%EH3 which was written by Dimitris M.
6
7
8 \subsection{SEAICE Package}
9 \label{sec:pkg:seaice}
10 \begin{rawhtml}
11 <!-- CMIREDIR:package_seaice: -->
12 \end{rawhtml}
13
14 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15 Patrick Heimbach, Chris Hill and Jinlun Zhang
16
17 %----------------------------------------------------------------------
18 \subsubsection{Introduction
19 \label{sec:pkg:exf:intro}}
20
21
22 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 sea-ice model.
24
25 CPP options enable or disable different aspects of the package
26 (Section \ref{sec:pkg:seaice:config}).
27 Run-Time options, flags, filenames and field-related dates/times are
28 set in \texttt{data.seaice}
29 (Section \ref{sec:pkg:seaice:runtime}).
30 A description of key subroutines is given in Section
31 \ref{sec:pkg:seaice:subroutines}.
32 Input fields, units and sign conventions are summarized in
33 Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34 output is listed in Section \ref{sec:pkg:seaice:fields_diagnostics}.
35
36 %----------------------------------------------------------------------
37
38 \subsubsection{SEAICE configuration, compiling \& running}
39
40 \paragraph{Compile-time options
41 \label{sec:pkg:seaice:config}}
42 ~
43
44 As with all MITgcm packages, SEAICE can be turned on or off at compile time
45 %
46 \begin{itemize}
47 %
48 \item
49 using the \texttt{packages.conf} file by adding \texttt{seaice} to it,
50 %
51 \item
52 or using \texttt{genmake2} adding
53 \texttt{-enable=seaice} or \texttt{-disable=seaice} switches
54 %
55 \item
56 \textit{required packages and CPP options}: \\
57 SEAICE requires the external forcing package \texttt{exf} to be enabled;
58 no additional CPP options are required.
59 %
60 \end{itemize}
61 (see Section \ref{sect:buildingCode}).
62
63 Parts of the SEAICE code can be enabled or disabled at compile time
64 via CPP preprocessor flags. These options are set in either
65 \texttt{SEAICE\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.
66 Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67
68 \begin{table}[h!]
69 \centering
70 \label{tab:pkg:seaice:cpp}
71 {\footnotesize
72 \begin{tabular}{|l|p{10cm}|}
73 \hline
74 \textbf{CPP option} & \textbf{Description} \\
75 \hline \hline
76 \texttt{SEAICE\_DEBUG} &
77 Enhance STDOUT for debugging \\
78 \texttt{SEAICE\_ALLOW\_DYNAMICS} &
79 sea-ice dynamics code \\
80 \texttt{SEAICE\_CGRID} &
81 LSR solver on C-grid (rather than original B-grid) \\
82 \texttt{SEAICE\_ALLOW\_EVP} &
83 use EVP rather than LSR rheology solver \\
84 \texttt{SEAICE\_EXTERNAL\_FLUXES} &
85 use EXF-computed fluxes as starting point \\
86 \texttt{SEAICE\_MULTICATEGORY} &
87 enable 8-category thermodynamics (by default undefined)\\
88 \texttt{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 enable linear dependence of the freezing point on salinity
90 (by default undefined)\\
91 \texttt{ALLOW\_SEAICE\_FLOODING} &
92 enable snow to ice conversion for submerged sea-ice \\
93 \texttt{SEAICE\_SALINITY} &
94 enable "salty" sea-ice (by default undefined) \\
95 \texttt{SEAICE\_AGE} &
96 enable "age tracer" sea-ice (by default undefined) \\
97 \texttt{SEAICE\_CAP\_HEFF} &
98 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99 \texttt{SEAICE\_BICE\_STRESS} &
100 B-grid only for backward compatiblity: turn on ice-stress on
101 ocean\\
102 \texttt{EXPLICIT\_SSH\_SLOPE} &
103 B-grid only for backward compatiblity: use ETAN for tilt
104 computations rather than geostrophic velocities \\
105 \hline
106 \end{tabular}
107 }
108 \caption{~}
109 \end{table}
110
111 %----------------------------------------------------------------------
112
113 \subsubsection{Run-time parameters
114 \label{sec:pkg:seaice:runtime}}
115
116 Run-time parameters are set in files
117 \texttt{data.pkg} (read in \texttt{packages\_readparms.F}),
118 and \texttt{data.seaice} (read in \texttt{seaice\_readparms.F}).
119
120 \paragraph{Enabling the package}
121 ~ \\
122 %
123 A package is switched on/off at run-time by setting
124 (e.g. for SEAICE) \texttt{useSEAICE = .TRUE.} in \texttt{data.pkg}.
125
126 \paragraph{General flags and parameters}
127 ~ \\
128 %
129 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 \input{part6/seaice-parms.tex}
131
132
133
134 %----------------------------------------------------------------------
135 \subsubsection{Description
136 \label{sec:pkg:seaice:descr}}
137
138 [TO BE CONTINUED/MODIFIED]
139
140 % Sea-ice model thermodynamics are based on Hibler
141 % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142 % and concentration. Snow is simulated as per Zhang et al.
143 % \cite{zha98a}. Although recent years have seen an increased use of
144 % multi-category thickness distribution sea-ice models for climate
145 % studies, the Hibler 2-category ice model is still the most widely used
146 % model and has resulted in realistic simulation of sea-ice variability
147 % on regional and global scales. Being less complicated, compared to
148 % multi-category models, the 2-category model permits easier application
149 % of adjoint model optimization methods.
150
151 % Note, however, that the Hibler 2-category model and its variants use a
152 % so-called zero-layer thermodynamic model to estimate ice growth and
153 % decay. The zero-layer thermodynamic model assumes that ice does not
154 % store heat and, therefore, tends to exaggerate the seasonal
155 % variability in ice thickness. This exaggeration can be significantly
156 % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157 % model that permits heat storage in ice. Recently, the three-layer
158 % thermodynamic model has been reformulated by Winton \cite{win00}. The
159 % reformulation improves model physics by representing the brine content
160 % of the upper ice with a variable heat capacity. It also improves
161 % model numerics and consumes less computer time and memory. The Winton
162 % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163 % reside under pkg/thsice. The package pkg/thsice is fully
164 % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165 % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166 % Winton thermodynamics
167
168 The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169 viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170 first introduced by \citet{hib79, hib80}. In order to adapt this model
171 to the requirements of coupled ice-ocean state estimation, many
172 important aspects of the original code have been modified and
173 improved:
174 \begin{itemize}
175 \item the code has been rewritten for an Arakawa C-grid, both B- and
176 C-grid variants are available; the C-grid code allows for no-slip
177 and free-slip lateral boundary conditions;
178 \item two different solution methods for solving the nonlinear
179 momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180 \citep{hun97};
181 \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182 \citet{cam08};
183 \item ice variables are advected by sophisticated, conservative
184 advection schemes with flux limiting;
185 \item growth and melt parameterizations have been refined and extended
186 in order to allow for more stable automatic differentiation of the code.
187 \end{itemize}
188 The sea ice model is tightly coupled to the ocean compontent of the
189 MITgcm. Heat, fresh water fluxes and surface stresses are computed
190 from the atmospheric state and -- by default -- modified by the ice
191 model at every time step.
192
193 The ice dynamics models that are most widely used for large-scale
194 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195 cavitating fluid (CF) model \citep{fla92}, and the
196 elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
197 model, the CF model does not allow ice shear in calculating ice
198 motion, stress, and deformation. EVP models approximate VP by adding
199 an elastic term to the equations for easier adaptation to parallel
200 computers. Because of its higher accuracy in plastic solution and
201 relatively simpler formulation, compared to the EVP model, we decided
202 to use the VP model as the default dynamic component of our ice
203 model. To do this we extended the line successive over relaxation
204 (LSOR) method of \citet{zhang97} for use in a parallel
205 configuration.
206
207 Note, that by default the seaice-package includes the orginial
208 so-called zero-layer thermodynamics following \citet{hib80} with a
209 snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210 assumes that ice does not store heat and, therefore, tends to
211 exaggerate the seasonal variability in ice thickness. This
212 exaggeration can be significantly reduced by using
213 \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214 that permits heat storage in ice. Recently, the three-layer
215 thermodynamic model has been reformulated by \citet{win00}. The
216 reformulation improves model physics by representing the brine content
217 of the upper ice with a variable heat capacity. It also improves
218 model numerics and consumes less computer time and memory. The Winton
219 sea-ice thermodynamics have been ported to the MIT GCM; they currently
220 reside under pkg/thsice. The package pkg/thsice is fully compatible
221 with pkg/seaice and with pkg/exf. When turned on together with
222 pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223 thermodynamics.
224
225 The sea ice model requires the following input fields: 10-m winds, 2-m
226 air temperature and specific humidity, downward longwave and shortwave
227 radiations, precipitation, evaporation, and river and glacier runoff.
228 The sea ice model also requires surface temperature from the ocean
229 model and the top level horizontal velocity. Output fields are
230 surface wind stress, evaporation minus precipitation minus runoff, net
231 surface heat flux, and net shortwave flux. The sea-ice model is
232 global: in ice-free regions bulk formulae are used to estimate oceanic
233 forcing from the atmospheric fields.
234
235 \subsubsection{Dynamics}
236 \label{sec:pkg:seaice:dynamics}
237
238 \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
239 \newcommand{\vtau}{\vek{\mathbf{\tau}}}
240 The momentum equation of the sea-ice model is
241 \begin{equation}
242 \label{eq:momseaice}
243 m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
244 \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
245 \end{equation}
246 where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
247 $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
248 $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
249 directions, respectively;
250 $f$ is the Coriolis parameter;
251 $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
252 respectively;
253 $g$ is the gravity accelation;
254 $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
255 $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
256 height potential in response to ocean dynamics ($g\eta$), to
257 atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
258 reference density) and a term due to snow and ice loading \citep{cam08};
259 and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
260 stress tensor $\sigma_{ij}$. %
261 Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
262 terms are given by
263 \begin{align*}
264 \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
265 R_{air} (\vek{U}_{air} -\vek{u}), \\
266 \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
267 R_{ocean}(\vek{U}_{ocean}-\vek{u}), \\
268 \end{align*}
269 where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
270 and surface currents of the ocean, respectively; $C_{air/ocean}$ are
271 air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
272 densities; and $R_{air/ocean}$ are rotation matrices that act on the
273 wind/current vectors.
274
275 For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
276 be related to the ice strain rate and strength by a nonlinear
277 viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
278 \begin{equation}
279 \label{eq:vpequation}
280 \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
281 + \left[\zeta(\dot{\epsilon}_{ij},P) -
282 \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
283 - \frac{P}{2}\delta_{ij}.
284 \end{equation}
285 The ice strain rate is given by
286 \begin{equation*}
287 \dot{\epsilon}_{ij} = \frac{1}{2}\left(
288 \frac{\partial{u_{i}}}{\partial{x_{j}}} +
289 \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
290 \end{equation*}
291 The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
292 both thickness $h$ and compactness (concentration) $c$:
293 \begin{equation}
294 P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
295 \label{eq:icestrength}
296 \end{equation}
297 with the constants $P^{*}$ (run-time parameter \texttt{SEAICE\_strength}) and
298 $C^{*}=20$. The nonlinear bulk and shear
299 viscosities $\eta$ and $\zeta$ are functions of ice strain rate
300 invariants and ice strength such that the principal components of the
301 stress lie on an elliptical yield curve with the ratio of major to
302 minor axis $e$ equal to $2$; they are given by:
303 \begin{align*}
304 \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
305 \zeta_{\max}\right) \\
306 \eta =& \frac{\zeta}{e^2} \\
307 \intertext{with the abbreviation}
308 \Delta = & \left[
309 \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
310 (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
311 2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
312 \right]^{\frac{1}{2}}.
313 \end{align*}
314 The bulk viscosities are bounded above by imposing both a minimum
315 $\Delta_{\min}$ (for numerical reasons, run-time parameter
316 \texttt{SEAICE\_EPS} with a default value of
317 $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
318 P_{\max}/\Delta^*$, where
319 $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
320 the option of bounding $\zeta$ from below by setting run-time
321 parameter \texttt{SEAICE\_zetaMin} $>0$, but this is generally not
322 recommended). For stress tensor computation the replacement pressure $P
323 = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
324 always lies on the elliptic yield curve by definition.
325
326 In the so-called truncated ellipse method the shear viscosity $\eta$
327 is capped to suppress any tensile stress \citep{hibler97, geiger98}:
328 \begin{equation}
329 \label{eq:etatem}
330 \eta = \min\left(\frac{\zeta}{e^2},
331 \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
332 {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
333 +4\dot{\epsilon}_{12}^2}}\right).
334 \end{equation}
335 To enable this method, set \texttt{\#define SEAICE\_ALLOW\_TEM} in
336 \texttt{SEAICE\_OPTIONS.h} and turn it on with
337 \texttt{SEAICEuseTEM=.TRUE.} in \texttt{data.seaice}.
338
339 In the current implementation, the VP-model is integrated with the
340 semi-implicit line successive over relaxation (LSOR)-solver of
341 \citet{zhang97}, which allows for long time steps that, in our case,
342 are limited by the explicit treatment of the Coriolis term. The
343 explicit treatment of the Coriolis term does not represent a severe
344 limitation because it restricts the time step to approximately the
345 same length as in the ocean model where the Coriolis term is also
346 treated explicitly.
347
348 \citet{hun97}'s introduced an elastic contribution to the strain
349 rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
350 the resulting elastic-viscous-plastic (EVP) and VP models are
351 identical at steady state,
352 \begin{equation}
353 \label{eq:evpequation}
354 \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
355 \frac{1}{2\eta}\sigma_{ij}
356 + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
357 + \frac{P}{4\zeta}\delta_{ij}
358 = \dot{\epsilon}_{ij}.
359 \end{equation}
360 %In the EVP model, equations for the components of the stress tensor
361 %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
362 %used and compared the present sea-ice model study.
363 The EVP-model uses an explicit time stepping scheme with a short
364 timestep. According to the recommendation of \citet{hun97}, the
365 EVP-model is stepped forward in time 120 times within the physical
366 ocean model time step (although this parameter is under debate), to
367 allow for elastic waves to disappear. Because the scheme does not
368 require a matrix inversion it is fast in spite of the small internal
369 timestep and simple to implement on parallel computers
370 \citep{hun97}. For completeness, we repeat the equations for the
371 components of the stress tensor $\sigma_{1} =
372 \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
373 $\sigma_{12}$. Introducing the divergence $D_D =
374 \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
375 and shearing strain rates, $D_T =
376 \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
377 2\dot{\epsilon}_{12}$, respectively, and using the above
378 abbreviations, the equations~\ref{eq:evpequation} can be written as:
379 \begin{align}
380 \label{eq:evpstresstensor1}
381 \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
382 \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
383 \label{eq:evpstresstensor2}
384 \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
385 &= \frac{P}{2T\Delta} D_T \\
386 \label{eq:evpstresstensor12}
387 \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
388 &= \frac{P}{4T\Delta} D_S
389 \end{align}
390 Here, the elastic parameter $E$ is redefined in terms of a damping timescale
391 $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
392 $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
393 the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
394 $E_{0} = \frac{1}{3}$ (which is the default value in the code).
395
396 To use the EVP solver, make sure that both \texttt{SEAICE\_CGRID} and
397 \texttt{SEAICE\_ALLOW\_EVP} are defined in \texttt{SEAICE\_OPTIONS.h}
398 (default). The solver is turned on by setting the sub-cycling time
399 step \texttt{SEAICE\_deltaTevp} to a value larger than zero. The
400 choice of this time step is under debate. \citet{hun97} recommend
401 order(120) time steps for the EVP solver within one model time step
402 $\Delta{t}$ (\texttt{deltaTmom}). One can also choose order(120) time
403 steps within the forcing time scale, but then we recommend adjusting
404 the damping time scale $T$ accordingly, by setting either
405 \texttt{SEAICE\_elasticParm} ($E_{0}$), so that
406 $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
407 \texttt{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
408
409 Moving sea ice exerts a stress on the ocean which is the opposite of
410 the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
411 applied directly to the surface layer of the ocean model. An
412 alternative ocean stress formulation is given by \citet{hibler87}.
413 Rather than applying $\vtau_{ocean}$ directly, the stress is derived
414 from integrating over the ice thickness to the bottom of the oceanic
415 surface layer. In the resulting equation for the \emph{combined}
416 ocean-ice momentum, the interfacial stress cancels and the total
417 stress appears as the sum of windstress and divergence of internal ice
418 stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
419 Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
420 now the velocity in the surface layer of the ocean that is used to
421 advect tracers, is really an average over the ocean surface
422 velocity and the ice velocity leading to an inconsistency as the ice
423 temperature and salinity are different from the oceanic variables.
424 To turn on the stress formulation of \citet{hibler87}, set
425 \texttt{useHB87StressCoupling=.TRUE.} in \texttt{data.seaice}.
426
427
428 % Our discretization differs from \citet{zhang97, zhang03} in the
429 % underlying grid, namely the Arakawa C-grid, but is otherwise
430 % straightforward. The EVP model, in particular, is discretized
431 % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
432 % center points and $\sigma_{12}$ on the corner (or vorticity) points of
433 % the grid. With this choice all derivatives are discretized as central
434 % differences and averaging is only involved in computing $\Delta$ and
435 % $P$ at vorticity points.
436
437 \subsubsection{Finite-volume discretization of the stress tensor
438 divergence}
439 \label{sec:pkg:seaice:discretization}
440 On an Arakawa C~grid, ice thickness and concentration and thus ice
441 strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
442 naturally defined a C-points in the center of the grid
443 cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
444 vorticity or Z-points (or $\zeta$-points, but here we use Z in order
445 avoid confusion with the bulk viscosity) at the bottom left corner of
446 the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
447 the following, the superscripts indicate location at Z or C points,
448 distance across the cell (F), along the cell edge (G), between
449 $u$-points (U), $v$-points (V), and C-points (C). The control volumes
450 of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
451 $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
452 (which follow the model code documentation except that $\zeta$-points
453 have been renamed to Z-points), the strain rates are discretized as:
454 \begin{align}
455 \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
456 => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
457 + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
458 \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
459 => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
460 + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
461 \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
462 \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
463 \biggr) \\ \notag
464 => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
465 \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
466 + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
467 &\phantom{=\frac{1}{2}\biggl(}
468 - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
469 - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
470 \biggr),
471 \end{align}
472 so that the diagonal terms of the strain rate tensor are naturally
473 defined at C-points and the symmetric off-diagonal term at
474 Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
475 $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
476 ``ghost-points''; for free slip boundary conditions
477 $(\epsilon_{12})^Z=0$ on boundaries.
478
479 For a spherical polar grid, the coefficients of the metric terms are
480 $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
481 the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
482 \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
483 general orthogonal curvilinear grid, $k_{1}$ and
484 $k_{2}$ can be approximated by finite differences of the cell widths:
485 \begin{align}
486 k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
487 \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
488 k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
489 \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
490 k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
491 \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
492 k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
493 \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
494 \end{align}
495
496 The stress tensor is given by the constitutive viscous-plastic
497 relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
498 [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
499 ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
500 $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
501 discretized in finite volumes. This conveniently avoids dealing with
502 further metric terms, as these are ``hidden'' in the differential cell
503 widths. For the $u$-equation ($\alpha=1$) we have:
504 \begin{align}
505 (\nabla\sigma)_{1}: \phantom{=}&
506 \frac{1}{A_{i,j}^w}
507 \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
508 \\\notag
509 =& \frac{1}{A_{i,j}^w} \biggl\{
510 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
511 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
512 \biggr\} \\ \notag
513 \approx& \frac{1}{A_{i,j}^w} \biggl\{
514 \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
515 + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
516 \biggr\} \\ \notag
517 =& \frac{1}{A_{i,j}^w} \biggl\{
518 (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
519 \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520 + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521 \biggr\}
522 \intertext{with}
523 (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524 \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526 &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527 k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530 \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532 \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533 %
534 (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
535 \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
536 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
537 & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
538 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
539 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
540 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
541 & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
542 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
543 \end{align}
544
545 Similarly, we have for the $v$-equation ($\alpha=2$):
546 \begin{align}
547 (\nabla\sigma)_{2}: \phantom{=}&
548 \frac{1}{A_{i,j}^s}
549 \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
550 \\\notag
551 =& \frac{1}{A_{i,j}^s} \biggl\{
552 \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
553 + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
554 \biggr\} \\ \notag
555 \approx& \frac{1}{A_{i,j}^s} \biggl\{
556 \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
557 + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
558 \biggr\} \\ \notag
559 =& \frac{1}{A_{i,j}^s} \biggl\{
560 (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
561 \\ \notag
562 \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
563 + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
564 \biggr\}
565 \intertext{with}
566 (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
567 \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
568 \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
569 &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570 \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
571 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572 k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
573 &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
574 k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
575 %
576 (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577 \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578 \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579 &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580 k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582 \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583 & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584 k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585 & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586 \end{align}
587
588 Again, no slip boundary conditions are realized via ghost points and
589 $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590 free slip boundary conditions the lateral stress is set to zeros. In
591 analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592 $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593
594 \subsubsection{Thermodynamics}
595 \label{sec:pkg:seaice:thermodynamics}
596
597 In its original formulation the sea ice model \citep{menemenlis05}
598 uses simple thermodynamics following the appendix of
599 \citet{sem76}. This formulation does not allow storage of heat,
600 that is, the heat capacity of ice is zero. Upward conductive heat flux
601 is parameterized assuming a linear temperature profile and together
602 with a constant ice conductivity. It is expressed as
603 $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
604 thickness, and $T_{w}-T_{0}$ the difference between water and ice
605 surface temperatures. This type of model is often refered to as a
606 ``zero-layer'' model. The surface heat flux is computed in a similar
607 way to that of \citet{parkinson79} and \citet{manabe79}.
608
609 The conductive heat flux depends strongly on the ice thickness $h$.
610 However, the ice thickness in the model represents a mean over a
611 potentially very heterogeneous thickness distribution. In order to
612 parameterize a sub-grid scale distribution for heat flux
613 computations, the mean ice thickness $h$ is split into seven thickness
614 categories $H_{n}$ that are equally distributed between $2h$ and a
615 minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
616 \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
617 thickness category is area-averaged to give the total heat flux
618 \citep{hibler84}. To use this thickness category parameterization set
619 \texttt{\#define SEAICE\_MULTICATEGORY}; note that this requires
620 different restart files and switching this flag on in the middle of an
621 integration is not possible.
622
623 The atmospheric heat flux is balanced by an oceanic heat flux from
624 below. The oceanic flux is proportional to
625 $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
626 the density and heat capacity of sea water and $T_{fr}$ is the local
627 freezing point temperature that is a function of salinity. This flux
628 is not assumed to instantaneously melt or create ice, but a time scale
629 of three days (run-time parameter \texttt{SEAICE\_gamma\_t}) is used
630 to relax $T_{w}$ to the freezing point.
631 %
632 The parameterization of lateral and vertical growth of sea ice follows
633 that of \citet{hib79, hib80}; the so-called lead closing parameter
634 $h_{0}$ (run-time parameter \texttt{HO}) has a default value of
635 0.5~meters.
636
637 On top of the ice there is a layer of snow that modifies the heat flux
638 and the albedo \citep{zha98a}. Snow modifies the effective
639 conductivity according to
640 \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
641 where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
642 If enough snow accumulates so that its weight submerges the ice and
643 the snow is flooded, a simple mass conserving parameterization of
644 snowice formation (a flood-freeze algorithm following Archimedes'
645 principle) turns snow into ice until the ice surface is back at $z=0$
646 \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
647 \texttt{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
648 \texttt{SEAICEuseFlooding=.true.}.
649
650 Effective ice thickness (ice volume per unit area,
651 $c\cdot{h}$), concentration $c$ and effective snow thickness
652 ($c\cdot{h}_{s}$) are advected by ice velocities:
653 \begin{equation}
654 \label{eq:advection}
655 \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
656 \Gamma_{X} + D_{X}
657 \end{equation}
658 where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
659 diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
660 %
661 From the various advection scheme that are available in the MITgcm, we
662 choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
663 advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
664 preserve sharp gradients and edges that are typical of sea ice
665 distributions and to rule out unphysical over- and undershoots
666 (negative thickness or concentration). These scheme conserve volume
667 and horizontal area and are unconditionally stable, so that we can set
668 $D_{X}=0$. Run-timeflags: \texttt{SEAICEadvScheme} (default=2),
669 \texttt{DIFF1} (default=0.004).
670
671 There is considerable doubt about the reliability of a ``zero-layer''
672 thermodynamic model --- \citet{semtner84} found significant errors in
673 phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
674 such models --- so that today many sea ice models employ more complex
675 thermodynamics. The MITgcm sea ice model provides the option to use
676 the thermodynamics model of \citet{win00}, which in turn is based
677 on the 3-layer model of \citet{sem76} and which treats brine
678 content by means of enthalpy conservation. This scheme requires
679 additional state variables, namely the enthalpy of the two ice layers
680 (instead of effective ice salinity), to be advected by ice velocities.
681 %
682 The internal sea ice temperature is inferred from ice enthalpy. To
683 avoid unphysical (negative) values for ice thickness and
684 concentration, a positive 2nd-order advection scheme with a SuperBee
685 flux limiter \citep{roe:85} is used in this study to advect all
686 sea-ice-related quantities of the \citet{win00} thermodynamic
687 model. Because of the non-linearity of the advection scheme, care
688 must be taken in advecting these quantities: when simply using ice
689 velocity to advect enthalpy, the total energy (i.e., the volume
690 integral of enthalpy) is not conserved. Alternatively, one can advect
691 the energy content (i.e., product of ice-volume and enthalpy) but then
692 false enthalpy extrema can occur, which then leads to unrealistic ice
693 temperature. In the currently implemented solution, the sea-ice mass
694 flux is used to advect the enthalpy in order to ensure conservation of
695 enthalpy and to prevent false enthalpy extrema.
696
697 %----------------------------------------------------------------------
698
699 \subsubsection{Key subroutines
700 \label{sec:pkg:seaice:subroutines}}
701
702 Top-level routine: \texttt{seaice\_model.F}
703
704 {\footnotesize
705 \begin{verbatim}
706
707 C !CALLING SEQUENCE:
708 c ...
709 c seaice_model (TOP LEVEL ROUTINE)
710 c |
711 c |-- #ifdef SEAICE_CGRID
712 c | SEAICE_DYNSOLVER
713 c | |
714 c | |-- < compute proxy for geostrophic velocity >
715 c | |
716 c | |-- < set up mass per unit area and Coriolis terms >
717 c | |
718 c | |-- < dynamic masking of areas with no ice >
719 c | |
720 c | |
721
722 c | #ELSE
723 c | DYNSOLVER
724 c | #ENDIF
725 c |
726 c |-- if ( useOBCS )
727 c | OBCS_APPLY_UVICE
728 c |
729 c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
730 c | SEAICE_ADVDIFF
731 c |
732 c |-- if ( usePW79thermodynamics )
733 c | SEAICE_GROWTH
734 c |
735 c |-- if ( useOBCS )
736 c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
737 c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
738 c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
739 c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
740 c |
741 c |-- < do various exchanges >
742 c |
743 c |-- < do additional diagnostics >
744 c |
745 c o
746
747 \end{verbatim}
748 }
749
750
751 %----------------------------------------------------------------------
752
753 \subsubsection{SEAICE diagnostics
754 \label{sec:pkg:seaice:diagnostics}}
755
756 Diagnostics output is available via the diagnostics package
757 (see Section \ref{sec:pkg:diagnostics}).
758 Available output fields are summarized in
759 Table \ref{tab:pkg:seaice:diagnostics}.
760
761 \begin{table}[h!]
762 \centering
763 \label{tab:pkg:seaice:diagnostics}
764 {\footnotesize
765 \begin{verbatim}
766 ---------+----+----+----------------+-----------------
767 <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
768 ---------+----+----+----------------+-----------------
769 SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
770 SIheff | 1 |SM |m |SEAICE effective ice thickness
771 SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
772 SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
773 SIhsnow | 1 |SM |m |SEAICE snow thickness
774 SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
775 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
776 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
777 SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
778 SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
779 SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
780 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
781 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
782 SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
783 SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
784 SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
785 SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
786 SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
787 SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
788 SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
789 SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
790 SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
791 SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
792 ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
793 ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
794 DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
795 DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
796 ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
797 ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
798 DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
799 DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
800 ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
801 ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
802 DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
803 DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
804 ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
805 ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
806 DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
807 DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
808 \end{verbatim}
809 }
810 \caption{Available diagnostics of the seaice-package}
811 \end{table}
812
813
814 %\subsubsection{Package Reference}
815
816 \subsubsection{Experiments and tutorials that use seaice}
817 \label{sec:pkg:seaice:experiments}
818
819 \begin{itemize}
820 \item{Labrador Sea experiment in lab\_sea verification directory. }
821 \end{itemize}
822
823
824 %%% Local Variables:
825 %%% mode: latex
826 %%% TeX-master: "../manual"
827 %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22