/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Wed May 13 12:54:45 2009 UTC (16 years, 2 months ago) by mlosch
Branch: MAIN
Changes since 1.7: +573 -55 lines
File MIME type: application/x-tex
add a good part of the model description of the ceaice-manuscripts (in
their original joint form) and adapt it for the manual.

1 mlosch 1.8 % $Header: /u/gcmpack/manual/part6/seaice.tex,v 1.7 2008/01/17 22:32:38 heimbach Exp $
2 edhill 1.1 % $Name: $
3    
4     %%EH3 Copied from "MITgcm/pkg/seaice/seaice_description.tex"
5     %%EH3 which was written by Dimitris M.
6    
7    
8 molod 1.4 \subsection{SEAICE Package}
9 edhill 1.1 \label{sec:pkg:seaice}
10 edhill 1.2 \begin{rawhtml}
11     <!-- CMIREDIR:package_seaice: -->
12     \end{rawhtml}
13 edhill 1.1
14 heimbach 1.6 Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin,
15     Patrick Heimbach, Chris Hill and Jinlun Zhang
16    
17     %----------------------------------------------------------------------
18     \subsubsection{Introduction
19     \label{sec:pkg:exf:intro}}
20    
21    
22 edhill 1.1 Package ``seaice'' provides a dynamic and thermodynamic interactive
23 heimbach 1.6 sea-ice model.
24    
25     CPP options enable or disable different aspects of the package
26     (Section \ref{sec:pkg:seaice:config}).
27 mlosch 1.8 Run-Time options, flags, filenames and field-related dates/times are
28 heimbach 1.6 set in \texttt{data.seaice}
29     (Section \ref{sec:pkg:seaice:runtime}).
30     A description of key subroutines is given in Section
31     \ref{sec:pkg:seaice:subroutines}.
32     Input fields, units and sign conventions are summarized in
33     Section \ref{sec:pkg:seaice:fields_units}, and available diagnostics
34     output is listed in Section \ref{sec:pkg:seaice:fields_diagnostics}.
35    
36     %----------------------------------------------------------------------
37    
38     \subsubsection{SEAICE configuration, compiling \& running}
39    
40     \paragraph{Compile-time options
41     \label{sec:pkg:seaice:config}}
42     ~
43    
44     As with all MITgcm packages, SEAICE can be turned on or off at compile time
45     %
46     \begin{itemize}
47     %
48     \item
49     using the \texttt{packages.conf} file by adding \texttt{seaice} to it,
50     %
51     \item
52     or using \texttt{genmake2} adding
53     \texttt{-enable=seaice} or \texttt{-disable=seaice} switches
54     %
55     \item
56     \textit{required packages and CPP options}: \\
57     SEAICE requires the external forcing package \texttt{exf} to be enabled;
58     no additional CPP options are required.
59     %
60     \end{itemize}
61     (see Section \ref{sect:buildingCode}).
62    
63     Parts of the SEAICE code can be enabled or disabled at compile time
64     via CPP preprocessor flags. These options are set in either
65     \texttt{SEAICE\_OPTIONS.h} or in \texttt{ECCO\_CPPOPTIONS.h}.
66     Table \ref{tab:pkg:seaice:cpp} summarizes these options.
67    
68     \begin{table}[h!]
69     \centering
70     \label{tab:pkg:seaice:cpp}
71     {\footnotesize
72 mlosch 1.8 \begin{tabular}{|l|p{10cm}|}
73 heimbach 1.6 \hline
74     \textbf{CPP option} & \textbf{Description} \\
75     \hline \hline
76     \texttt{SEAICE\_DEBUG} &
77     Enhance STDOUT for debugging \\
78     \texttt{SEAICE\_ALLOW\_DYNAMICS} &
79     sea-ice dynamics code \\
80     \texttt{SEAICE\_CGRID} &
81 mlosch 1.8 LSR solver on C-grid (rather than original B-grid) \\
82 heimbach 1.6 \texttt{SEAICE\_ALLOW\_EVP} &
83     use EVP rather than LSR rheology solver \\
84     \texttt{SEAICE\_EXTERNAL\_FLUXES} &
85     use EXF-computed fluxes as starting point \\
86     \texttt{SEAICE\_MULTICATEGORY} &
87 mlosch 1.8 enable 8-category thermodynamics (by default undefined)\\
88 heimbach 1.6 \texttt{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89 mlosch 1.8 enable linear dependence of the freezing point on salinity
90     (by default undefined)\\
91 heimbach 1.6 \texttt{ALLOW\_SEAICE\_FLOODING} &
92     enable snow to ice conversion for submerged sea-ice \\
93     \texttt{SEAICE\_SALINITY} &
94 mlosch 1.8 enable "salty" sea-ice (by default undefined) \\
95     \texttt{SEAICE\_AGE} &
96     enable "age tracer" sea-ice (by default undefined) \\
97 heimbach 1.6 \texttt{SEAICE\_CAP\_HEFF} &
98 mlosch 1.8 enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99     \texttt{SEAICE\_BICE\_STRESS} &
100     B-grid only for backward compatiblity: turn on ice-stress on
101     ocean\\
102     \texttt{EXPLICIT\_SSH\_SLOPE} &
103     B-grid only for backward compatiblity: use ETAN for tilt
104     computations rather than geostrophic velocities \\
105 heimbach 1.6 \hline
106     \end{tabular}
107     }
108     \caption{~}
109     \end{table}
110    
111     %----------------------------------------------------------------------
112    
113     \subsubsection{Run-time parameters
114     \label{sec:pkg:seaice:runtime}}
115    
116     Run-time parameters are set in files
117     \texttt{data.pkg} (read in \texttt{packages\_readparms.F}),
118     and \texttt{data.seaice} (read in \texttt{seaice\_readparms.F}).
119    
120     \paragraph{Enabling the package}
121     ~ \\
122     %
123 mlosch 1.8 A package is switched on/off at run-time by setting
124 heimbach 1.6 (e.g. for SEAICE) \texttt{useSEAICE = .TRUE.} in \texttt{data.pkg}.
125    
126     \paragraph{General flags and parameters}
127     ~ \\
128     %
129 mlosch 1.8 Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130 heimbach 1.6 \input{part6/seaice-parms.tex}
131    
132    
133    
134     %----------------------------------------------------------------------
135     \subsubsection{Description
136     \label{sec:pkg:seaice:descr}}
137    
138     [TO BE CONTINUED/MODIFIED]
139    
140 mlosch 1.8 % Sea-ice model thermodynamics are based on Hibler
141     % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142     % and concentration. Snow is simulated as per Zhang et al.
143     % \cite{zha98a}. Although recent years have seen an increased use of
144     % multi-category thickness distribution sea-ice models for climate
145     % studies, the Hibler 2-category ice model is still the most widely used
146     % model and has resulted in realistic simulation of sea-ice variability
147     % on regional and global scales. Being less complicated, compared to
148     % multi-category models, the 2-category model permits easier application
149     % of adjoint model optimization methods.
150    
151     % Note, however, that the Hibler 2-category model and its variants use a
152     % so-called zero-layer thermodynamic model to estimate ice growth and
153     % decay. The zero-layer thermodynamic model assumes that ice does not
154     % store heat and, therefore, tends to exaggerate the seasonal
155     % variability in ice thickness. This exaggeration can be significantly
156     % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157     % model that permits heat storage in ice. Recently, the three-layer
158     % thermodynamic model has been reformulated by Winton \cite{win00}. The
159     % reformulation improves model physics by representing the brine content
160     % of the upper ice with a variable heat capacity. It also improves
161     % model numerics and consumes less computer time and memory. The Winton
162     % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163     % reside under pkg/thsice. The package pkg/thsice is fully
164     % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165     % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166     % Winton thermodynamics
167    
168     The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169     viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170     first introduced by \citet{hib79, hib80}. In order to adapt this model
171     to the requirements of coupled ice-ocean state estimation, many
172     important aspects of the original code have been modified and
173     improved:
174     \begin{itemize}
175     \item the code has been rewritten for an Arakawa C-grid, both B- and
176     C-grid variants are available; the C-grid code allows for no-slip
177     and free-slip lateral boundary conditions;
178     \item two different solution methods for solving the nonlinear
179     momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180     \citep{hun97};
181     \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182     \citet{cam08};
183     \item ice variables are advected by sophisticated, conservative
184     advection schemes with flux limiting;
185     \item growth and melt parameterizations have been refined and extended
186     in order to allow for more stable automatic differentiation of the code.
187     \end{itemize}
188     The sea ice model is tightly coupled to the ocean compontent of the
189     MITgcm. Heat, fresh water fluxes and surface stresses are computed
190     from the atmospheric state and -- by default -- modified by the ice
191     model at every time step.
192 edhill 1.1
193     The ice dynamics models that are most widely used for large-scale
194 mlosch 1.8 climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195     cavitating fluid (CF) model \citep{fla92}, and the
196     elastic-viscous-plastic (EVP) model \citep{hun97}. Compared to the VP
197 edhill 1.1 model, the CF model does not allow ice shear in calculating ice
198     motion, stress, and deformation. EVP models approximate VP by adding
199     an elastic term to the equations for easier adaptation to parallel
200     computers. Because of its higher accuracy in plastic solution and
201     relatively simpler formulation, compared to the EVP model, we decided
202 mlosch 1.8 to use the VP model as the default dynamic component of our ice
203     model. To do this we extended the line successive over relaxation
204     (LSOR) method of \citet{zhang97} for use in a parallel
205     configuration.
206    
207     Note, that by default the seaice-package includes the orginial
208     so-called zero-layer thermodynamics following \citet{hib80} with a
209     snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210     assumes that ice does not store heat and, therefore, tends to
211     exaggerate the seasonal variability in ice thickness. This
212     exaggeration can be significantly reduced by using
213     \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214     that permits heat storage in ice. Recently, the three-layer
215     thermodynamic model has been reformulated by \citet{win00}. The
216     reformulation improves model physics by representing the brine content
217     of the upper ice with a variable heat capacity. It also improves
218     model numerics and consumes less computer time and memory. The Winton
219     sea-ice thermodynamics have been ported to the MIT GCM; they currently
220     reside under pkg/thsice. The package pkg/thsice is fully compatible
221     with pkg/seaice and with pkg/exf. When turned on together with
222     pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223     thermodynamics.
224 edhill 1.1
225     The sea ice model requires the following input fields: 10-m winds, 2-m
226     air temperature and specific humidity, downward longwave and shortwave
227     radiations, precipitation, evaporation, and river and glacier runoff.
228     The sea ice model also requires surface temperature from the ocean
229 mlosch 1.8 model and the top level horizontal velocity. Output fields are
230     surface wind stress, evaporation minus precipitation minus runoff, net
231     surface heat flux, and net shortwave flux. The sea-ice model is
232     global: in ice-free regions bulk formulae are used to estimate oceanic
233     forcing from the atmospheric fields.
234    
235     \subsubsection{Dynamics}
236     \label{sec:pkg:seaice:dynamics}
237    
238     \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
239     \newcommand{\vtau}{\vek{\mathbf{\tau}}}
240     The momentum equation of the sea-ice model is
241     \begin{equation}
242     \label{eq:momseaice}
243     m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
244     \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
245     \end{equation}
246     where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
247     $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
248     $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
249     directions, respectively;
250     $f$ is the Coriolis parameter;
251     $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
252     respectively;
253     $g$ is the gravity accelation;
254     $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
255     $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
256     height potential in response to ocean dynamics ($g\eta$), to
257     atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
258     reference density) and a term due to snow and ice loading \citep{cam08};
259     and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
260     stress tensor $\sigma_{ij}$. %
261     Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
262     terms are given by
263     \begin{align*}
264     \vtau_{air} = & \rho_{air} C_{air} |\vek{U}_{air} -\vek{u}|
265     R_{air} (\vek{U}_{air} -\vek{u}), \\
266     \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
267     R_{ocean}(\vek{U}_{ocean}-\vek{u}), \\
268     \end{align*}
269     where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
270     and surface currents of the ocean, respectively; $C_{air/ocean}$ are
271     air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
272     densities; and $R_{air/ocean}$ are rotation matrices that act on the
273     wind/current vectors.
274    
275     For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
276     be related to the ice strain rate and strength by a nonlinear
277     viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
278     \begin{equation}
279     \label{eq:vpequation}
280     \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
281     + \left[\zeta(\dot{\epsilon}_{ij},P) -
282     \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
283     - \frac{P}{2}\delta_{ij}.
284     \end{equation}
285     The ice strain rate is given by
286     \begin{equation*}
287     \dot{\epsilon}_{ij} = \frac{1}{2}\left(
288     \frac{\partial{u_{i}}}{\partial{x_{j}}} +
289     \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
290     \end{equation*}
291     The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
292     both thickness $h$ and compactness (concentration) $c$:
293     \begin{equation}
294     P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
295     \label{eq:icestrength}
296     \end{equation}
297     with the constants $P^{*}$ (run-time parameter \texttt{SEAICE\_strength}) and
298     $C^{*}=20$. The nonlinear bulk and shear
299     viscosities $\eta$ and $\zeta$ are functions of ice strain rate
300     invariants and ice strength such that the principal components of the
301     stress lie on an elliptical yield curve with the ratio of major to
302     minor axis $e$ equal to $2$; they are given by:
303     \begin{align*}
304     \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
305     \zeta_{\max}\right) \\
306     \eta =& \frac{\zeta}{e^2} \\
307     \intertext{with the abbreviation}
308     \Delta = & \left[
309     \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
310     (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 +
311     2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
312     \right]^{\frac{1}{2}}.
313     \end{align*}
314     The bulk viscosities are bounded above by imposing both a minimum
315     $\Delta_{\min}$ (for numerical reasons, run-time parameter
316     \texttt{SEAICE\_EPS} with a default value of
317     $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
318     P_{\max}/\Delta^*$, where
319     $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
320     the option of bounding $\zeta$ from below by setting run-time
321     parameter \texttt{SEAICE\_zetaMin} $>0$, but this is generally not
322     recommended). For stress tensor computation the replacement pressure $P
323     = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
324     always lies on the elliptic yield curve by definition.
325    
326     In the so-called truncated ellipse method the shear viscosity $\eta$
327     is capped to suppress any tensile stress \citep{hibler97, geiger98}:
328     \begin{equation}
329     \label{eq:etatem}
330     \eta = \min\left(\frac{\zeta}{e^2},
331     \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
332     {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
333     +4\dot{\epsilon}_{12}^2}}\right).
334     \end{equation}
335     To enable this method, set \texttt{\#define SEAICE\_ALLOW\_TEM} in
336     \texttt{SEAICE\_OPTIONS.h} and turn it on with
337     \texttt{SEAICEuseTEM=.TRUE.} in \texttt{data.seaice}.
338    
339     In the current implementation, the VP-model is integrated with the
340     semi-implicit line successive over relaxation (LSOR)-solver of
341     \citet{zhang97}, which allows for long time steps that, in our case,
342     are limited by the explicit treatment of the Coriolis term. The
343     explicit treatment of the Coriolis term does not represent a severe
344     limitation because it restricts the time step to approximately the
345     same length as in the ocean model where the Coriolis term is also
346     treated explicitly.
347    
348     \citet{hun97}'s introduced an elastic contribution to the strain
349     rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
350     the resulting elastic-viscous-plastic (EVP) and VP models are
351     identical at steady state,
352     \begin{equation}
353     \label{eq:evpequation}
354     \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
355     \frac{1}{2\eta}\sigma_{ij}
356     + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
357     + \frac{P}{4\zeta}\delta_{ij}
358     = \dot{\epsilon}_{ij}.
359     \end{equation}
360     %In the EVP model, equations for the components of the stress tensor
361     %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
362     %used and compared the present sea-ice model study.
363     The EVP-model uses an explicit time stepping scheme with a short
364     timestep. According to the recommendation of \citet{hun97}, the
365     EVP-model is stepped forward in time 120 times within the physical
366     ocean model time step (although this parameter is under debate), to
367     allow for elastic waves to disappear. Because the scheme does not
368     require a matrix inversion it is fast in spite of the small internal
369     timestep and simple to implement on parallel computers
370     \citep{hun97}. For completeness, we repeat the equations for the
371     components of the stress tensor $\sigma_{1} =
372     \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
373     $\sigma_{12}$. Introducing the divergence $D_D =
374     \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
375     and shearing strain rates, $D_T =
376     \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
377     2\dot{\epsilon}_{12}$, respectively, and using the above
378     abbreviations, the equations~\ref{eq:evpequation} can be written as:
379     \begin{align}
380     \label{eq:evpstresstensor1}
381     \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
382     \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
383     \label{eq:evpstresstensor2}
384     \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
385     &= \frac{P}{2T\Delta} D_T \\
386     \label{eq:evpstresstensor12}
387     \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
388     &= \frac{P}{4T\Delta} D_S
389     \end{align}
390     Here, the elastic parameter $E$ is redefined in terms of a damping timescale
391     $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
392     $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
393     the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
394     $E_{0} = \frac{1}{3}$ (which is the default value in the code).
395    
396     To use the EVP solver, make sure that both \texttt{SEAICE\_CGRID} and
397     \texttt{SEAICE\_ALLOW\_EVP} are defined in \texttt{SEAICE\_OPTIONS.h}
398     (default). The solver is turned on by setting the sub-cycling time
399     step \texttt{SEAICE\_deltaTevp} to a value larger than zero. The
400     choice of this time step is under debate. \citet{hun97} recommend
401     order(120) time steps for the EVP solver within one model time step
402     $\Delta{t}$ (\texttt{deltaTmom}). One can also choose order(120) time
403     steps within the forcing time scale, but then we recommend adjusting
404     the damping time scale $T$ accordingly, by setting either
405     \texttt{SEAICE\_elasticParm} ($E_{0}$), so that
406     $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
407     \texttt{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
408    
409     Moving sea ice exerts a stress on the ocean which is the opposite of
410     the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
411     applied directly to the surface layer of the ocean model. An
412     alternative ocean stress formulation is given by \citet{hibler87}.
413     Rather than applying $\vtau_{ocean}$ directly, the stress is derived
414     from integrating over the ice thickness to the bottom of the oceanic
415     surface layer. In the resulting equation for the \emph{combined}
416     ocean-ice momentum, the interfacial stress cancels and the total
417     stress appears as the sum of windstress and divergence of internal ice
418     stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
419     Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
420     now the velocity in the surface layer of the ocean that is used to
421     advect tracers, is really an average over the ocean surface
422     velocity and the ice velocity leading to an inconsistency as the ice
423     temperature and salinity are different from the oceanic variables.
424     To turn on the stress formulation of \citet{hibler87}, set
425     \texttt{useHB87StressCoupling=.TRUE.} in \texttt{data.seaice}.
426    
427    
428     % Our discretization differs from \citet{zhang97, zhang03} in the
429     % underlying grid, namely the Arakawa C-grid, but is otherwise
430     % straightforward. The EVP model, in particular, is discretized
431     % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
432     % center points and $\sigma_{12}$ on the corner (or vorticity) points of
433     % the grid. With this choice all derivatives are discretized as central
434     % differences and averaging is only involved in computing $\Delta$ and
435     % $P$ at vorticity points.
436    
437     \subsubsection{Finite-volume discretization of the stress tensor
438     divergence}
439     \label{sec:pkg:seaice:discretization}
440     On an Arakawa C~grid, ice thickness and concentration and thus ice
441     strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
442     naturally defined a C-points in the center of the grid
443     cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
444     vorticity or Z-points (or $\zeta$-points, but here we use Z in order
445     avoid confusion with the bulk viscosity) at the bottom left corner of
446     the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
447     the following, the superscripts indicate location at Z or C points,
448     distance across the cell (F), along the cell edge (G), between
449     $u$-points (U), $v$-points (V), and C-points (C). The control volumes
450     of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
451     $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
452     (which follow the model code documentation except that $\zeta$-points
453     have been renamed to Z-points), the strain rates are discretized as:
454     \begin{align}
455     \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
456     => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
457     + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
458     \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
459     => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
460     + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
461     \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
462     \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
463     \biggr) \\ \notag
464     => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
465     \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
466     + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
467     &\phantom{=\frac{1}{2}\biggl(}
468     - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
469     - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
470     \biggr),
471     \end{align}
472     so that the diagonal terms of the strain rate tensor are naturally
473     defined at C-points and the symmetric off-diagonal term at
474     Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
475     $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
476     ``ghost-points''; for free slip boundary conditions
477     $(\epsilon_{12})^Z=0$ on boundaries.
478    
479     For a spherical polar grid, the coefficients of the metric terms are
480     $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
481     the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
482     \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
483     general orthogonal curvilinear grid, $k_{1}$ and
484     $k_{2}$ can be approximated by finite differences of the cell widths:
485     \begin{align}
486     k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
487     \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
488     k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
489     \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
490     k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
491     \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
492     k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
493     \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
494     \end{align}
495    
496     The stress tensor is given by the constitutive viscous-plastic
497     relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
498     [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
499     ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
500     $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
501     discretized in finite volumes. This conveniently avoids dealing with
502     further metric terms, as these are ``hidden'' in the differential cell
503     widths. For the $u$-equation ($\alpha=1$) we have:
504     \begin{align}
505     (\nabla\sigma)_{1}: \phantom{=}&
506     \frac{1}{A_{i,j}^w}
507     \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
508     \\\notag
509     =& \frac{1}{A_{i,j}^w} \biggl\{
510     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
511     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
512     \biggr\} \\ \notag
513     \approx& \frac{1}{A_{i,j}^w} \biggl\{
514     \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
515     + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
516     \biggr\} \\ \notag
517     =& \frac{1}{A_{i,j}^w} \biggl\{
518     (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
519     \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520     + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521     \biggr\}
522     \intertext{with}
523     (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524     \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526     &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527     k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530     \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532     \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533     %
534     (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
535     \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
536     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
537     & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
538     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
539     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
540     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
541     & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
542     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
543     \end{align}
544    
545     Similarly, we have for the $v$-equation ($\alpha=2$):
546     \begin{align}
547     (\nabla\sigma)_{2}: \phantom{=}&
548     \frac{1}{A_{i,j}^s}
549     \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
550     \\\notag
551     =& \frac{1}{A_{i,j}^s} \biggl\{
552     \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
553     + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
554     \biggr\} \\ \notag
555     \approx& \frac{1}{A_{i,j}^s} \biggl\{
556     \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
557     + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
558     \biggr\} \\ \notag
559     =& \frac{1}{A_{i,j}^s} \biggl\{
560     (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
561     \\ \notag
562     \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
563     + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
564     \biggr\}
565     \intertext{with}
566     (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
567     \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
568     \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
569     &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570     \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
571     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572     k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
573     &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
574     k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
575     %
576     (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577     \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578     \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579     &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580     k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582     \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583     & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584     k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585     & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586     \end{align}
587    
588     Again, no slip boundary conditions are realized via ghost points and
589     $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590     free slip boundary conditions the lateral stress is set to zeros. In
591     analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592     $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593    
594     \subsubsection{Thermodynamics}
595     \label{sec:pkg:seaice:thermodynamics}
596    
597     In its original formulation the sea ice model \citep{menemenlis05}
598     uses simple thermodynamics following the appendix of
599     \citet{sem76}. This formulation does not allow storage of heat,
600     that is, the heat capacity of ice is zero. Upward conductive heat flux
601     is parameterized assuming a linear temperature profile and together
602     with a constant ice conductivity. It is expressed as
603     $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
604     thickness, and $T_{w}-T_{0}$ the difference between water and ice
605     surface temperatures. This type of model is often refered to as a
606     ``zero-layer'' model. The surface heat flux is computed in a similar
607     way to that of \citet{parkinson79} and \citet{manabe79}.
608    
609     The conductive heat flux depends strongly on the ice thickness $h$.
610     However, the ice thickness in the model represents a mean over a
611     potentially very heterogeneous thickness distribution. In order to
612     parameterize a sub-grid scale distribution for heat flux
613     computations, the mean ice thickness $h$ is split into seven thickness
614     categories $H_{n}$ that are equally distributed between $2h$ and a
615     minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
616     \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
617     thickness category is area-averaged to give the total heat flux
618     \citep{hibler84}. To use this thickness category parameterization set
619     \texttt{\#define SEAICE\_MULTICATEGORY}; note that this requires
620     different restart files and switching this flag on in the middle of an
621     integration is not possible.
622    
623     The atmospheric heat flux is balanced by an oceanic heat flux from
624     below. The oceanic flux is proportional to
625     $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
626     the density and heat capacity of sea water and $T_{fr}$ is the local
627     freezing point temperature that is a function of salinity. This flux
628     is not assumed to instantaneously melt or create ice, but a time scale
629     of three days (run-time parameter \texttt{SEAICE\_gamma\_t}) is used
630     to relax $T_{w}$ to the freezing point.
631     %
632     The parameterization of lateral and vertical growth of sea ice follows
633     that of \citet{hib79, hib80}; the so-called lead closing parameter
634     $h_{0}$ (run-time parameter \texttt{HO}) has a default value of
635     0.5~meters.
636    
637     On top of the ice there is a layer of snow that modifies the heat flux
638     and the albedo \citep{zha98a}. Snow modifies the effective
639     conductivity according to
640     \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
641     where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
642     If enough snow accumulates so that its weight submerges the ice and
643     the snow is flooded, a simple mass conserving parameterization of
644     snowice formation (a flood-freeze algorithm following Archimedes'
645     principle) turns snow into ice until the ice surface is back at $z=0$
646     \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
647     \texttt{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
648     \texttt{SEAICEuseFlooding=.true.}.
649    
650     Effective ice thickness (ice volume per unit area,
651     $c\cdot{h}$), concentration $c$ and effective snow thickness
652     ($c\cdot{h}_{s}$) are advected by ice velocities:
653     \begin{equation}
654     \label{eq:advection}
655     \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
656     \Gamma_{X} + D_{X}
657     \end{equation}
658     where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
659     diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
660     %
661     From the various advection scheme that are available in the MITgcm, we
662     choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
663     advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
664     preserve sharp gradients and edges that are typical of sea ice
665     distributions and to rule out unphysical over- and undershoots
666     (negative thickness or concentration). These scheme conserve volume
667     and horizontal area and are unconditionally stable, so that we can set
668     $D_{X}=0$. Run-timeflags: \texttt{SEAICEadvScheme} (default=2),
669     \texttt{DIFF1} (default=0.004).
670    
671     There is considerable doubt about the reliability of a ``zero-layer''
672     thermodynamic model --- \citet{semtner84} found significant errors in
673     phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
674     such models --- so that today many sea ice models employ more complex
675     thermodynamics. The MITgcm sea ice model provides the option to use
676     the thermodynamics model of \citet{win00}, which in turn is based
677     on the 3-layer model of \citet{sem76} and which treats brine
678     content by means of enthalpy conservation. This scheme requires
679     additional state variables, namely the enthalpy of the two ice layers
680     (instead of effective ice salinity), to be advected by ice velocities.
681     %
682     The internal sea ice temperature is inferred from ice enthalpy. To
683     avoid unphysical (negative) values for ice thickness and
684     concentration, a positive 2nd-order advection scheme with a SuperBee
685     flux limiter \citep{roe:85} is used in this study to advect all
686     sea-ice-related quantities of the \citet{win00} thermodynamic
687     model. Because of the non-linearity of the advection scheme, care
688     must be taken in advecting these quantities: when simply using ice
689     velocity to advect enthalpy, the total energy (i.e., the volume
690     integral of enthalpy) is not conserved. Alternatively, one can advect
691     the energy content (i.e., product of ice-volume and enthalpy) but then
692     false enthalpy extrema can occur, which then leads to unrealistic ice
693     temperature. In the currently implemented solution, the sea-ice mass
694     flux is used to advect the enthalpy in order to ensure conservation of
695     enthalpy and to prevent false enthalpy extrema.
696 edhill 1.1
697 heimbach 1.6 %----------------------------------------------------------------------
698    
699     \subsubsection{Key subroutines
700     \label{sec:pkg:seaice:subroutines}}
701    
702 mlosch 1.8 Top-level routine: \texttt{seaice\_model.F}
703 heimbach 1.6
704     {\footnotesize
705     \begin{verbatim}
706    
707     C !CALLING SEQUENCE:
708     c ...
709     c seaice_model (TOP LEVEL ROUTINE)
710     c |
711     c |-- #ifdef SEAICE_CGRID
712     c | SEAICE_DYNSOLVER
713 heimbach 1.7 c | |
714     c | |-- < compute proxy for geostrophic velocity >
715     c | |
716     c | |-- < set up mass per unit area and Coriolis terms >
717     c | |
718     c | |-- < dynamic masking of areas with no ice >
719     c | |
720     c | |
721    
722 heimbach 1.6 c | #ELSE
723     c | DYNSOLVER
724     c | #ENDIF
725     c |
726 heimbach 1.7 c |-- if ( useOBCS )
727     c | OBCS_APPLY_UVICE
728     c |
729     c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
730     c | SEAICE_ADVDIFF
731     c |
732     c |-- if ( usePW79thermodynamics )
733     c | SEAICE_GROWTH
734     c |
735     c |-- if ( useOBCS )
736     c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
737     c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
738     c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
739     c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
740     c |
741     c |-- < do various exchanges >
742     c |
743     c |-- < do additional diagnostics >
744     c |
745     c o
746 heimbach 1.6
747     \end{verbatim}
748     }
749    
750    
751     %----------------------------------------------------------------------
752    
753 mlosch 1.8 \subsubsection{SEAICE diagnostics
754 heimbach 1.6 \label{sec:pkg:seaice:diagnostics}}
755    
756     Diagnostics output is available via the diagnostics package
757     (see Section \ref{sec:pkg:diagnostics}).
758     Available output fields are summarized in
759     Table \ref{tab:pkg:seaice:diagnostics}.
760    
761     \begin{table}[h!]
762     \centering
763     \label{tab:pkg:seaice:diagnostics}
764     {\footnotesize
765     \begin{verbatim}
766     ---------+----+----+----------------+-----------------
767     <-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
768     ---------+----+----+----------------+-----------------
769     SIarea | 1 |SM |m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
770     SIheff | 1 |SM |m |SEAICE effective ice thickness
771     SIuice | 1 |UU |m/s |SEAICE zonal ice velocity, >0 from West to East
772     SIvice | 1 |VV |m/s |SEAICE merid. ice velocity, >0 from South to North
773     SIhsnow | 1 |SM |m |SEAICE snow thickness
774     SIhsalt | 1 |SM |g/m^2 |SEAICE effective salinity
775 mlosch 1.8 SIatmFW | 1 |SM |kg/m^2/s |Net freshwater flux from the atmosphere (+=down)
776 heimbach 1.6 SIuwind | 1 |SM |m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
777     SIvwind | 1 |SM |m/s |SEAICE meridional 10-m wind speed, >0 increases uVel
778     SIfu | 1 |UU |N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel
779     SIfv | 1 |VV |N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel
780 mlosch 1.8 SIempmr | 1 |SM |kg/m^2/s |SEAICE upward freshwater flux, > 0 increases salt
781 heimbach 1.6 SIqnet | 1 |SM |W/m^2 |SEAICE upward heatflux, turb+rad, >0 decreases theta
782     SIqsw | 1 |SM |W/m^2 |SEAICE upward shortwave radiat., >0 decreases theta
783     SIpress | 1 |SM |m^2/s^2 |SEAICE strength (with upper and lower limit)
784     SIzeta | 1 |SM |m^2/s |SEAICE nonlinear bulk viscosity
785     SIeta | 1 |SM |m^2/s |SEAICE nonlinear shear viscosity
786     SIsigI | 1 |SM |no units |SEAICE normalized principle stress, component one
787     SIsigII | 1 |SM |no units |SEAICE normalized principle stress, component two
788     SIthdgrh| 1 |SM |m/s |SEAICE thermodynamic growth rate of effective ice thickness
789     SIsnwice| 1 |SM |m/s |SEAICE ice formation rate due to flooding
790     SIuheff | 1 |UU |m^2/s |Zonal Transport of effective ice thickness
791     SIvheff | 1 |VV |m^2/s |Meridional Transport of effective ice thickness
792     ADVxHEFF| 1 |UU |m.m^2/s |Zonal Advective Flux of eff ice thickn
793     ADVyHEFF| 1 |VV |m.m^2/s |Meridional Advective Flux of eff ice thickn
794     DFxEHEFF| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff ice thickn
795     DFyEHEFF| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff ice thickn
796     ADVxAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Advective Flux of fract area
797     ADVyAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Advective Flux of fract area
798     DFxEAREA| 1 |UU |m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
799     DFyEAREA| 1 |VV |m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
800     ADVxSNOW| 1 |UU |m.m^2/s |Zonal Advective Flux of eff snow thickn
801     ADVySNOW| 1 |VV |m.m^2/s |Meridional Advective Flux of eff snow thickn
802     DFxESNOW| 1 |UU |m.m^2/s |Zonal Diffusive Flux of eff snow thickn
803     DFyESNOW| 1 |VV |m.m^2/s |Meridional Diffusive Flux of eff snow thickn
804     ADVxSSLT| 1 |UU |psu.m^2/s |Zonal Advective Flux of seaice salinity
805     ADVySSLT| 1 |VV |psu.m^2/s |Meridional Advective Flux of seaice salinity
806     DFxESSLT| 1 |UU |psu.m^2/s |Zonal Diffusive Flux of seaice salinity
807     DFyESSLT| 1 |VV |psu.m^2/s |Meridional Diffusive Flux of seaice salinity
808     \end{verbatim}
809     }
810 mlosch 1.8 \caption{Available diagnostics of the seaice-package}
811 heimbach 1.6 \end{table}
812    
813    
814 molod 1.4 %\subsubsection{Package Reference}
815 edhill 1.1
816 molod 1.5 \subsubsection{Experiments and tutorials that use seaice}
817     \label{sec:pkg:seaice:experiments}
818    
819     \begin{itemize}
820     \item{Labrador Sea experiment in lab\_sea verification directory. }
821     \end{itemize}
822    
823 mlosch 1.8
824     %%% Local Variables:
825     %%% mode: latex
826     %%% TeX-master: "../manual"
827     %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22