/[MITgcm]/manual/s_phys_pkgs/text/seaice.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/seaice.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by heimbach, Thu Jan 17 22:32:38 2008 UTC revision 1.8 by mlosch, Wed May 13 12:54:45 2009 UTC
# Line 24  sea-ice model. Line 24  sea-ice model.
24    
25  CPP options enable or disable different aspects of the package  CPP options enable or disable different aspects of the package
26  (Section \ref{sec:pkg:seaice:config}).  (Section \ref{sec:pkg:seaice:config}).
27  Runtime options, flags, filenames and field-related dates/times are  Run-Time options, flags, filenames and field-related dates/times are
28  set in \texttt{data.seaice}  set in \texttt{data.seaice}
29  (Section \ref{sec:pkg:seaice:runtime}).  (Section \ref{sec:pkg:seaice:runtime}).
30  A description of key subroutines is given in Section  A description of key subroutines is given in Section
# Line 69  Table \ref{tab:pkg:seaice:cpp} summarize Line 69  Table \ref{tab:pkg:seaice:cpp} summarize
69  \centering  \centering
70    \label{tab:pkg:seaice:cpp}    \label{tab:pkg:seaice:cpp}
71    {\footnotesize    {\footnotesize
72      \begin{tabular}{|l|l|}      \begin{tabular}{|l|p{10cm}|}
73        \hline        \hline
74        \textbf{CPP option}  &  \textbf{Description}  \\        \textbf{CPP option}  &  \textbf{Description}  \\
75        \hline \hline        \hline \hline
# Line 78  Table \ref{tab:pkg:seaice:cpp} summarize Line 78  Table \ref{tab:pkg:seaice:cpp} summarize
78          \texttt{SEAICE\_ALLOW\_DYNAMICS} &          \texttt{SEAICE\_ALLOW\_DYNAMICS} &
79            sea-ice dynamics code \\            sea-ice dynamics code \\
80          \texttt{SEAICE\_CGRID} &          \texttt{SEAICE\_CGRID} &
81            LSR solver on C-grid (rather than original B-grid \\            LSR solver on C-grid (rather than original B-grid) \\
82          \texttt{SEAICE\_ALLOW\_EVP} &          \texttt{SEAICE\_ALLOW\_EVP} &
83            use EVP rather than LSR rheology solver \\            use EVP rather than LSR rheology solver \\
84          \texttt{SEAICE\_EXTERNAL\_FLUXES} &          \texttt{SEAICE\_EXTERNAL\_FLUXES} &
85            use EXF-computed fluxes as starting point \\            use EXF-computed fluxes as starting point \\
86          \texttt{SEAICE\_MULTICATEGORY} &          \texttt{SEAICE\_MULTICATEGORY} &
87            enable 8-category thermodynamics \\            enable 8-category thermodynamics (by default undefined)\\
88          \texttt{SEAICE\_VARIABLE\_FREEZING\_POINT} &          \texttt{SEAICE\_VARIABLE\_FREEZING\_POINT} &
89            enable linear dependence of the freezing point on salinity \\            enable linear dependence of the freezing point on salinity
90              (by default undefined)\\
91          \texttt{ALLOW\_SEAICE\_FLOODING} &          \texttt{ALLOW\_SEAICE\_FLOODING} &
92            enable snow to ice conversion for submerged sea-ice \\            enable snow to ice conversion for submerged sea-ice \\
93          \texttt{SEAICE\_SALINITY} &          \texttt{SEAICE\_SALINITY} &
94            enable "salty" sea-ice \\            enable "salty" sea-ice (by default undefined) \\
95            \texttt{SEAICE\_AGE} &
96              enable "age tracer" sea-ice (by default undefined) \\
97          \texttt{SEAICE\_CAP\_HEFF} &          \texttt{SEAICE\_CAP\_HEFF} &
98            enable capping of sea-ice thickness to MAX\_HEFF \\            enable capping of sea-ice thickness to MAX\_HEFF \\ \hline
99            \texttt{SEAICE\_BICE\_STRESS} &
100              B-grid only for backward compatiblity: turn on ice-stress on
101              ocean\\
102            \texttt{EXPLICIT\_SSH\_SLOPE} &
103              B-grid only for backward compatiblity: use ETAN for tilt
104              computations rather than geostrophic velocities \\
105        \hline        \hline
106      \end{tabular}      \end{tabular}
107    }    }
# Line 111  and \texttt{data.seaice} (read in \textt Line 120  and \texttt{data.seaice} (read in \textt
120  \paragraph{Enabling the package}  \paragraph{Enabling the package}
121  ~ \\  ~ \\
122  %  %
123  A package is switched on/off at runtime by setting  A package is switched on/off at run-time by setting
124  (e.g. for SEAICE) \texttt{useSEAICE = .TRUE.} in \texttt{data.pkg}.  (e.g. for SEAICE) \texttt{useSEAICE = .TRUE.} in \texttt{data.pkg}.
125    
126  \paragraph{General flags and parameters}  \paragraph{General flags and parameters}
127  ~ \\  ~ \\
128  %  %
129    Table~\ref{tab:pkg:seaice:runtimeparms} lists most run-time parameters.
130  \input{part6/seaice-parms.tex}  \input{part6/seaice-parms.tex}
131    
132    
# Line 127  A package is switched on/off at runtime Line 137  A package is switched on/off at runtime
137    
138  [TO BE CONTINUED/MODIFIED]  [TO BE CONTINUED/MODIFIED]
139    
140  Sea-ice model thermodynamics are based on Hibler  % Sea-ice model thermodynamics are based on Hibler
141  \cite{hib80}, that is, a 2-category model that simulates ice thickness  % \cite{hib80}, that is, a 2-category model that simulates ice thickness
142  and concentration.  Snow is simulated as per Zhang et al.  % and concentration.  Snow is simulated as per Zhang et al.
143  \cite{zha98a}.  Although recent years have seen an increased use of  % \cite{zha98a}.  Although recent years have seen an increased use of
144  multi-category thickness distribution sea-ice models for climate  % multi-category thickness distribution sea-ice models for climate
145  studies, the Hibler 2-category ice model is still the most widely used  % studies, the Hibler 2-category ice model is still the most widely used
146  model and has resulted in realistic simulation of sea-ice variability  % model and has resulted in realistic simulation of sea-ice variability
147  on regional and global scales.  Being less complicated, compared to  % on regional and global scales.  Being less complicated, compared to
148  multi-category models, the 2-category model permits easier application  % multi-category models, the 2-category model permits easier application
149  of adjoint model optimization methods.  % of adjoint model optimization methods.
150    
151  Note, however, that the Hibler 2-category model and its variants use a  % Note, however, that the Hibler 2-category model and its variants use a
152  so-called zero-layer thermodynamic model to estimate ice growth and  % so-called zero-layer thermodynamic model to estimate ice growth and
153  decay.  The zero-layer thermodynamic model assumes that ice does not  % decay.  The zero-layer thermodynamic model assumes that ice does not
154  store heat and, therefore, tends to exaggerate the seasonal  % store heat and, therefore, tends to exaggerate the seasonal
155  variability in ice thickness.  This exaggeration can be significantly  % variability in ice thickness.  This exaggeration can be significantly
156  reduced by using Semtner's \cite{sem76} three-layer thermodynamic  % reduced by using Semtner's \cite{sem76} three-layer thermodynamic
157  model that permits heat storage in ice.  Recently, the three-layer  % model that permits heat storage in ice.  Recently, the three-layer
158  thermodynamic model has been reformulated by Winton \cite{win00}.  The  % thermodynamic model has been reformulated by Winton \cite{win00}.  The
159  reformulation improves model physics by representing the brine content  % reformulation improves model physics by representing the brine content
160  of the upper ice with a variable heat capacity.  It also improves  % of the upper ice with a variable heat capacity.  It also improves
161  model numerics and consumes less computer time and memory.  The Winton  % model numerics and consumes less computer time and memory.  The Winton
162  sea-ice thermodynamics have been ported to the MIT GCM; they currently  % sea-ice thermodynamics have been ported to the MIT GCM; they currently
163  reside under pkg/thsice.  At present pkg/thsice is not fully  % reside under pkg/thsice. The package pkg/thsice is fully
164  compatible with pkg/seaice and with pkg/exf.  But the eventual  % compatible with pkg/seaice and with pkg/exf. When turned on togeter
165  objective is to have fully compatible and interchangeable  % with pkg/seaice, the zero-layer thermodynamics are replaced by the by
166  thermodynamic packages for sea-ice, so that it becomes possible to use  % Winton thermodynamics
167  Hibler dynamics with Winton thermodyanmics.  
168    The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
169    viscous-plastic (VP) dynamic-thermodynamic sea ice model \citep{zhang97}
170    first introduced by \citet{hib79, hib80}. In order to adapt this model
171    to the requirements of coupled ice-ocean state estimation, many
172    important aspects of the original code have been modified and
173    improved:
174    \begin{itemize}
175    \item the code has been rewritten for an Arakawa C-grid, both B- and
176      C-grid variants are available; the C-grid code allows for no-slip
177      and free-slip lateral boundary conditions;
178    \item two different solution methods for solving the nonlinear
179      momentum equations have been adopted: LSOR \citep{zhang97}, and EVP
180      \citep{hun97};
181    \item ice-ocean stress can be formulated as in \citet{hibler87} or as in
182      \citet{cam08};
183    \item ice variables are advected by sophisticated, conservative
184      advection schemes with flux limiting;
185    \item growth and melt parameterizations have been refined and extended
186      in order to allow for more stable automatic differentiation of the code.
187    \end{itemize}
188    The sea ice model is tightly coupled to the ocean compontent of the
189    MITgcm.  Heat, fresh water fluxes and surface stresses are computed
190    from the atmospheric state and -- by default -- modified by the ice
191    model at every time step.
192    
193  The ice dynamics models that are most widely used for large-scale  The ice dynamics models that are most widely used for large-scale
194  climate studies are the viscous-plastic (VP) model \cite{hib79}, the  climate studies are the viscous-plastic (VP) model \citep{hib79}, the
195  cavitating fluid (CF) model \cite{fla92}, and the  cavitating fluid (CF) model \citep{fla92}, and the
196  elastic-viscous-plastic (EVP) model \cite{hun97}.  Compared to the VP  elastic-viscous-plastic (EVP) model \citep{hun97}.  Compared to the VP
197  model, the CF model does not allow ice shear in calculating ice  model, the CF model does not allow ice shear in calculating ice
198  motion, stress, and deformation.  EVP models approximate VP by adding  motion, stress, and deformation.  EVP models approximate VP by adding
199  an elastic term to the equations for easier adaptation to parallel  an elastic term to the equations for easier adaptation to parallel
200  computers.  Because of its higher accuracy in plastic solution and  computers.  Because of its higher accuracy in plastic solution and
201  relatively simpler formulation, compared to the EVP model, we decided  relatively simpler formulation, compared to the EVP model, we decided
202  to use the VP model as the dynamic component of our ice model.  To do  to use the VP model as the default dynamic component of our ice
203  this we extended the alternating-direction-implicit (ADI) method of  model. To do this we extended the line successive over relaxation
204  Zhang and Rothrock \cite{zha00} for use in a parallel configuration.  (LSOR) method of \citet{zhang97} for use in a parallel
205    configuration.
206    
207    Note, that by default the seaice-package includes the orginial
208    so-called zero-layer thermodynamics following \citet{hib80} with a
209    snow cover as in \citet{zha98a}. The zero-layer thermodynamic model
210    assumes that ice does not store heat and, therefore, tends to
211    exaggerate the seasonal variability in ice thickness.  This
212    exaggeration can be significantly reduced by using
213    \citeauthor{sem76}'s~[\citeyear{sem76}] three-layer thermodynamic model
214    that permits heat storage in ice.  Recently, the three-layer
215    thermodynamic model has been reformulated by \citet{win00}.  The
216    reformulation improves model physics by representing the brine content
217    of the upper ice with a variable heat capacity.  It also improves
218    model numerics and consumes less computer time and memory.  The Winton
219    sea-ice thermodynamics have been ported to the MIT GCM; they currently
220    reside under pkg/thsice. The package pkg/thsice is fully compatible
221    with pkg/seaice and with pkg/exf. When turned on together with
222    pkg/seaice, the zero-layer thermodynamics are replaced by the Winton
223    thermodynamics.
224    
225  The sea ice model requires the following input fields: 10-m winds, 2-m  The sea ice model requires the following input fields: 10-m winds, 2-m
226  air temperature and specific humidity, downward longwave and shortwave  air temperature and specific humidity, downward longwave and shortwave
227  radiations, precipitation, evaporation, and river and glacier runoff.  radiations, precipitation, evaporation, and river and glacier runoff.
228  The sea ice model also requires surface temperature from the ocean  The sea ice model also requires surface temperature from the ocean
229  model and third level horizontal velocity which is used as a proxy for  model and the top level horizontal velocity.  Output fields are
230  surface geostrophic velocity.  Output fields are surface wind stress,  surface wind stress, evaporation minus precipitation minus runoff, net
231  evaporation minus precipitation minus runoff, net surface heat flux,  surface heat flux, and net shortwave flux.  The sea-ice model is
232  and net shortwave flux.  The sea-ice model is global: in ice-free  global: in ice-free regions bulk formulae are used to estimate oceanic
233  regions bulk formulae are used to estimate oceanic forcing from the  forcing from the atmospheric fields.
234  atmospheric fields.  
235    \subsubsection{Dynamics}
236    \label{sec:pkg:seaice:dynamics}
237    
238    \newcommand{\vek}[1]{\ensuremath{\vec{\mathbf{#1}}}}
239    \newcommand{\vtau}{\vek{\mathbf{\tau}}}
240    The momentum equation of the sea-ice model is
241    \begin{equation}
242      \label{eq:momseaice}
243      m \frac{D\vek{u}}{Dt} = -mf\vek{k}\times\vek{u} + \vtau_{air} +
244      \vtau_{ocean} - m \nabla{\phi(0)} + \vek{F},
245    \end{equation}
246    where $m=m_{i}+m_{s}$ is the ice and snow mass per unit area;
247    $\vek{u}=u\vek{i}+v\vek{j}$ is the ice velocity vector;
248    $\vek{i}$, $\vek{j}$, and $\vek{k}$ are unit vectors in the $x$, $y$, and $z$
249    directions, respectively;
250    $f$ is the Coriolis parameter;
251    $\vtau_{air}$ and $\vtau_{ocean}$ are the wind-ice and ocean-ice stresses,
252    respectively;
253    $g$ is the gravity accelation;
254    $\nabla\phi(0)$ is the gradient (or tilt) of the sea surface height;
255    $\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}$ is the sea surface
256    height potential in response to ocean dynamics ($g\eta$), to
257    atmospheric pressure loading ($p_{a}/\rho_{0}$, where $\rho_{0}$ is a
258    reference density) and a term due to snow and ice loading \citep{cam08};
259    and $\vek{F}=\nabla\cdot\sigma$ is the divergence of the internal ice
260    stress tensor $\sigma_{ij}$. %
261    Advection of sea-ice momentum is neglected. The wind and ice-ocean stress
262    terms are given by
263    \begin{align*}
264      \vtau_{air}   = & \rho_{air}  C_{air}   |\vek{U}_{air}  -\vek{u}|
265                       R_{air}  (\vek{U}_{air}  -\vek{u}), \\
266      \vtau_{ocean} = & \rho_{ocean}C_{ocean} |\vek{U}_{ocean}-\vek{u}|
267                       R_{ocean}(\vek{U}_{ocean}-\vek{u}), \\
268    \end{align*}
269    where $\vek{U}_{air/ocean}$ are the surface winds of the atmosphere
270    and surface currents of the ocean, respectively; $C_{air/ocean}$ are
271    air and ocean drag coefficients; $\rho_{air/ocean}$ are reference
272    densities; and $R_{air/ocean}$ are rotation matrices that act on the
273    wind/current vectors.
274    
275    For an isotropic system the stress tensor $\sigma_{ij}$ ($i,j=1,2$) can
276    be related to the ice strain rate and strength by a nonlinear
277    viscous-plastic (VP) constitutive law \citep{hib79, zhang97}:
278    \begin{equation}
279      \label{eq:vpequation}
280      \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
281      + \left[\zeta(\dot{\epsilon}_{ij},P) -
282        \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}  
283      - \frac{P}{2}\delta_{ij}.
284    \end{equation}
285    The ice strain rate is given by
286    \begin{equation*}
287      \dot{\epsilon}_{ij} = \frac{1}{2}\left(
288        \frac{\partial{u_{i}}}{\partial{x_{j}}} +
289        \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).
290    \end{equation*}
291    The maximum ice pressure $P_{\max}$, a measure of ice strength, depends on
292    both thickness $h$ and compactness (concentration) $c$:
293    \begin{equation}
294      P_{\max} = P^{*}c\,h\,e^{[C^{*}\cdot(1-c)]},
295    \label{eq:icestrength}
296    \end{equation}
297    with the constants $P^{*}$ (run-time parameter \texttt{SEAICE\_strength}) and
298    $C^{*}=20$. The nonlinear bulk and shear
299    viscosities $\eta$ and $\zeta$ are functions of ice strain rate
300    invariants and ice strength such that the principal components of the
301    stress lie on an elliptical yield curve with the ratio of major to
302    minor axis $e$ equal to $2$; they are given by:
303    \begin{align*}
304      \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
305       \zeta_{\max}\right) \\
306      \eta =& \frac{\zeta}{e^2} \\
307      \intertext{with the abbreviation}
308      \Delta = & \left[
309        \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
310        (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +
311        2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
312      \right]^{\frac{1}{2}}.
313    \end{align*}
314    The bulk viscosities are bounded above by imposing both a minimum
315    $\Delta_{\min}$ (for numerical reasons, run-time parameter
316    \texttt{SEAICE\_EPS} with a default value of
317    $10^{-10}\text{\,s}^{-1}$) and a maximum $\zeta_{\max} =
318    P_{\max}/\Delta^*$, where
319    $\Delta^*=(5\times10^{12}/2\times10^4)\text{\,s}^{-1}$. (There is also
320    the option of bounding $\zeta$ from below by setting run-time
321    parameter \texttt{SEAICE\_zetaMin} $>0$, but this is generally not
322    recommended). For stress tensor computation the replacement pressure $P
323    = 2\,\Delta\zeta$ \citep{hibler95} is used so that the stress state
324    always lies on the elliptic yield curve by definition.
325    
326    In the so-called truncated ellipse method the shear viscosity $\eta$
327    is capped to suppress any tensile stress \citep{hibler97, geiger98}:
328    \begin{equation}
329      \label{eq:etatem}
330      \eta = \min\left(\frac{\zeta}{e^2},
331      \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
332      {\sqrt{(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})^2
333          +4\dot{\epsilon}_{12}^2}}\right).
334    \end{equation}
335    To enable this method, set \texttt{\#define SEAICE\_ALLOW\_TEM} in
336    \texttt{SEAICE\_OPTIONS.h} and turn it on with
337    \texttt{SEAICEuseTEM=.TRUE.} in \texttt{data.seaice}.
338    
339    In the current implementation, the VP-model is integrated with the
340    semi-implicit line successive over relaxation (LSOR)-solver of
341    \citet{zhang97}, which allows for long time steps that, in our case,
342    are limited by the explicit treatment of the Coriolis term. The
343    explicit treatment of the Coriolis term does not represent a severe
344    limitation because it restricts the time step to approximately the
345    same length as in the ocean model where the Coriolis term is also
346    treated explicitly.
347    
348    \citet{hun97}'s introduced an elastic contribution to the strain
349    rate in order to regularize Eq.~\ref{eq:vpequation} in such a way that
350    the resulting elastic-viscous-plastic (EVP) and VP models are
351    identical at steady state,
352    \begin{equation}
353      \label{eq:evpequation}
354      \frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
355      \frac{1}{2\eta}\sigma_{ij}
356      + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}  
357      + \frac{P}{4\zeta}\delta_{ij}
358      = \dot{\epsilon}_{ij}.
359    \end{equation}
360    %In the EVP model, equations for the components of the stress tensor
361    %$\sigma_{ij}$ are solved explicitly. Both model formulations will be
362    %used and compared the present sea-ice model study.
363    The EVP-model uses an explicit time stepping scheme with a short
364    timestep. According to the recommendation of \citet{hun97}, the
365    EVP-model is stepped forward in time 120 times within the physical
366    ocean model time step (although this parameter is under debate), to
367    allow for elastic waves to disappear.  Because the scheme does not
368    require a matrix inversion it is fast in spite of the small internal
369    timestep and simple to implement on parallel computers
370    \citep{hun97}. For completeness, we repeat the equations for the
371    components of the stress tensor $\sigma_{1} =
372    \sigma_{11}+\sigma_{22}$, $\sigma_{2}= \sigma_{11}-\sigma_{22}$, and
373    $\sigma_{12}$. Introducing the divergence $D_D =
374    \dot{\epsilon}_{11}+\dot{\epsilon}_{22}$, and the horizontal tension
375    and shearing strain rates, $D_T =
376    \dot{\epsilon}_{11}-\dot{\epsilon}_{22}$ and $D_S =
377    2\dot{\epsilon}_{12}$, respectively, and using the above
378    abbreviations, the equations~\ref{eq:evpequation} can be written as:
379    \begin{align}
380      \label{eq:evpstresstensor1}
381      \frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
382      \frac{P}{2T} &= \frac{P}{2T\Delta} D_D \\
383      \label{eq:evpstresstensor2}
384      \frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
385      &= \frac{P}{2T\Delta} D_T \\
386      \label{eq:evpstresstensor12}
387      \frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
388      &= \frac{P}{4T\Delta} D_S
389    \end{align}
390    Here, the elastic parameter $E$ is redefined in terms of a damping timescale
391    $T$ for elastic waves \[E=\frac{\zeta}{T}.\]
392    $T=E_{0}\Delta{t}$ with the tunable parameter $E_0<1$ and
393    the external (long) timestep $\Delta{t}$. \citet{hun97} recommend
394    $E_{0} = \frac{1}{3}$ (which is the default value in the code).
395    
396    To use the EVP solver, make sure that both \texttt{SEAICE\_CGRID} and
397    \texttt{SEAICE\_ALLOW\_EVP} are defined in \texttt{SEAICE\_OPTIONS.h}
398    (default). The solver is turned on by setting the sub-cycling time
399    step \texttt{SEAICE\_deltaTevp} to a value larger than zero. The
400    choice of this time step is under debate. \citet{hun97} recommend
401    order(120) time steps for the EVP solver within one model time step
402    $\Delta{t}$ (\texttt{deltaTmom}). One can also choose order(120) time
403    steps within the forcing time scale, but then we recommend adjusting
404    the damping time scale $T$ accordingly, by setting either
405    \texttt{SEAICE\_elasticParm} ($E_{0}$), so that
406    $E_{0}\Delta{t}=\mbox{forcing time scale}$, or directly
407    \texttt{SEAICE\_evpTauRelax} ($T$) to the forcing time scale.
408    
409    Moving sea ice exerts a stress on the ocean which is the opposite of
410    the stress $\vtau_{ocean}$ in Eq.~\ref{eq:momseaice}. This stess is
411    applied directly to the surface layer of the ocean model. An
412    alternative ocean stress formulation is given by \citet{hibler87}.
413    Rather than applying $\vtau_{ocean}$ directly, the stress is derived
414    from integrating over the ice thickness to the bottom of the oceanic
415    surface layer. In the resulting equation for the \emph{combined}
416    ocean-ice momentum, the interfacial stress cancels and the total
417    stress appears as the sum of windstress and divergence of internal ice
418    stresses: $\delta(z) (\vtau_{air} + \vek{F})/\rho_0$, \citep[see also
419    Eq.\,2 of][]{hibler87}. The disadvantage of this formulation is that
420    now the velocity in the surface layer of the ocean that is used to
421    advect tracers, is really an average over the ocean surface
422    velocity and the ice velocity leading to an inconsistency as the ice
423    temperature and salinity are different from the oceanic variables.
424    To turn on the stress formulation of \citet{hibler87}, set
425    \texttt{useHB87StressCoupling=.TRUE.} in \texttt{data.seaice}.
426    
427    
428    % Our discretization differs from \citet{zhang97, zhang03} in the
429    % underlying grid, namely the Arakawa C-grid, but is otherwise
430    % straightforward. The EVP model, in particular, is discretized
431    % naturally on the C-grid with $\sigma_{1}$ and $\sigma_{2}$ on the
432    % center points and $\sigma_{12}$ on the corner (or vorticity) points of
433    % the grid. With this choice all derivatives are discretized as central
434    % differences and averaging is only involved in computing $\Delta$ and
435    % $P$ at vorticity points.
436    
437    \subsubsection{Finite-volume discretization of the stress tensor
438      divergence}
439    \label{sec:pkg:seaice:discretization}
440    On an Arakawa C~grid, ice thickness and concentration and thus ice
441    strength $P$ and bulk and shear viscosities $\zeta$ and $\eta$ are
442    naturally defined a C-points in the center of the grid
443    cell. Discretization requires only averaging of $\zeta$ and $\eta$ to
444    vorticity or Z-points (or $\zeta$-points, but here we use Z in order
445    avoid confusion with the bulk viscosity) at the bottom left corner of
446    the cell to give $\overline{\zeta}^{Z}$ and $\overline{\eta}^{Z}$. In
447    the following, the superscripts indicate location at Z or C points,
448    distance across the cell (F), along the cell edge (G), between
449    $u$-points (U), $v$-points (V), and C-points (C). The control volumes
450    of the $u$- and $v$-equations in the grid cell at indices $(i,j)$ are
451    $A_{i,j}^{w}$ and $A_{i,j}^{s}$, respectively. With these definitions
452    (which follow the model code documentation except that $\zeta$-points
453    have been renamed to Z-points), the strain rates are discretized as:
454    \begin{align}
455      \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
456      => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
457       + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
458      \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
459      => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
460       + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
461       \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
462       \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
463       \biggr) \\ \notag
464      => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
465      \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
466       + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
467      &\phantom{=\frac{1}{2}\biggl(}
468       - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
469       - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
470       \biggr),
471    \end{align}
472    so that the diagonal terms of the strain rate tensor are naturally
473    defined at C-points and the symmetric off-diagonal term at
474    Z-points. No-slip boundary conditions ($u_{i,j-1}+u_{i,j}=0$ and
475    $v_{i-1,j}+v_{i,j}=0$ across boundaries) are implemented via
476    ``ghost-points''; for free slip boundary conditions
477    $(\epsilon_{12})^Z=0$ on boundaries.
478    
479    For a spherical polar grid, the coefficients of the metric terms are
480    $k_{1}=0$ and $k_{2}=-\tan\phi/a$, with the spherical radius $a$ and
481    the latitude $\phi$; $\Delta{x}_1 = \Delta{x} = a\cos\phi
482    \Delta\lambda$, and $\Delta{x}_2 = \Delta{y}=a\Delta\phi$. For a
483    general orthogonal curvilinear grid, $k_{1}$ and
484    $k_{2}$ can be approximated by finite differences of the cell widths:
485    \begin{align}
486      k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
487      \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
488      k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
489      \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
490      k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
491      \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
492      k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
493      \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}
494    \end{align}
495    
496    The stress tensor is given by the constitutive viscous-plastic
497    relation $\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
498    [(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
499    ]\delta_{\alpha\beta}$ \citep{hib79}. The stress tensor divergence
500    $(\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}$, is
501    discretized in finite volumes. This conveniently avoids dealing with
502    further metric terms, as these are ``hidden'' in the differential cell
503    widths. For the $u$-equation ($\alpha=1$) we have:
504    \begin{align}
505      (\nabla\sigma)_{1}: \phantom{=}&
506      \frac{1}{A_{i,j}^w}
507      \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
508      \\\notag
509      =& \frac{1}{A_{i,j}^w} \biggl\{
510      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
511      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
512      \biggr\} \\ \notag
513      \approx& \frac{1}{A_{i,j}^w} \biggl\{
514      \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
515      + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
516      \biggr\} \\ \notag
517      =& \frac{1}{A_{i,j}^w} \biggl\{
518      (\Delta{x}_2\sigma_{11})_{i,j}^C - (\Delta{x}_2\sigma_{11})_{i-1,j}^C \\\notag
519      \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
520      + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
521      \biggr\}
522      \intertext{with}
523      (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
524      \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
525      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
526      &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
527      k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
528      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
529      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
530      \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
531      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
532      \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
533      %
534      (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
535      \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
536      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
537      & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
538      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
539      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
540      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
541      & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
542      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
543    \end{align}
544    
545    Similarly, we have for the $v$-equation ($\alpha=2$):
546    \begin{align}
547      (\nabla\sigma)_{2}: \phantom{=}&
548      \frac{1}{A_{i,j}^s}
549      \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
550      \\\notag
551      =& \frac{1}{A_{i,j}^s} \biggl\{
552      \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
553      + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
554      \biggr\} \\ \notag
555      \approx& \frac{1}{A_{i,j}^s} \biggl\{
556      \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
557      + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
558      \biggr\} \\ \notag
559      =& \frac{1}{A_{i,j}^s} \biggl\{
560      (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
561      \\ \notag
562      \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
563      + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
564      \biggr\}
565      \intertext{with}
566      (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
567      \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
568      \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\\notag
569      &+ \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
570      \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
571      &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
572      k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
573      &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
574      k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
575      %
576      (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
577      \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
578      \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
579      &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
580      k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
581      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
582      \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
583      & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
584      k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
585      & -\Delta{x}_{i,j}^{F} \frac{P}{2}
586    \end{align}
587    
588    Again, no slip boundary conditions are realized via ghost points and
589    $u_{i,j-1}+u_{i,j}=0$ and $v_{i-1,j}+v_{i,j}=0$ across boundaries. For
590    free slip boundary conditions the lateral stress is set to zeros. In
591    analogy to $(\epsilon_{12})^Z=0$ on boundaries, we set
592    $\sigma_{21}^{Z}=0$, or equivalently $\eta_{i,j}^{Z}=0$, on boundaries.
593    
594    \subsubsection{Thermodynamics}
595    \label{sec:pkg:seaice:thermodynamics}
596    
597    In its original formulation the sea ice model \citep{menemenlis05}
598    uses simple thermodynamics following the appendix of
599    \citet{sem76}. This formulation does not allow storage of heat,
600    that is, the heat capacity of ice is zero. Upward conductive heat flux
601    is parameterized assuming a linear temperature profile and together
602    with a constant ice conductivity. It is expressed as
603    $(K/h)(T_{w}-T_{0})$, where $K$ is the ice conductivity, $h$ the ice
604    thickness, and $T_{w}-T_{0}$ the difference between water and ice
605    surface temperatures. This type of model is often refered to as a
606    ``zero-layer'' model. The surface heat flux is computed in a similar
607    way to that of \citet{parkinson79} and \citet{manabe79}.
608    
609    The conductive heat flux depends strongly on the ice thickness $h$.
610    However, the ice thickness in the model represents a mean over a
611    potentially very heterogeneous thickness distribution.  In order to
612    parameterize a sub-grid scale distribution for heat flux
613    computations, the mean ice thickness $h$ is split into seven thickness
614    categories $H_{n}$ that are equally distributed between $2h$ and a
615    minimum imposed ice thickness of $5\text{\,cm}$ by $H_n=
616    \frac{2n-1}{7}\,h$ for $n\in[1,7]$. The heat fluxes computed for each
617    thickness category is area-averaged to give the total heat flux
618    \citep{hibler84}. To use this thickness category parameterization set
619    \texttt{\#define SEAICE\_MULTICATEGORY}; note that this requires
620    different restart files and switching this flag on in the middle of an
621    integration is not possible.
622    
623    The atmospheric heat flux is balanced by an oceanic heat flux from
624    below.  The oceanic flux is proportional to
625    $\rho\,c_{p}\left(T_{w}-T_{fr}\right)$ where $\rho$ and $c_{p}$ are
626    the density and heat capacity of sea water and $T_{fr}$ is the local
627    freezing point temperature that is a function of salinity. This flux
628    is not assumed to instantaneously melt or create ice, but a time scale
629    of three days (run-time parameter \texttt{SEAICE\_gamma\_t}) is used
630    to relax $T_{w}$ to the freezing point.
631    %
632    The parameterization of lateral and vertical growth of sea ice follows
633    that of \citet{hib79, hib80}; the so-called lead closing parameter
634    $h_{0}$ (run-time parameter \texttt{HO}) has a default value of
635    0.5~meters.
636    
637    On top of the ice there is a layer of snow that modifies the heat flux
638    and the albedo \citep{zha98a}. Snow modifies the effective
639    conductivity according to
640    \[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]
641    where $K_s$ is the conductivity of snow and $h_s$ the snow thickness.
642    If enough snow accumulates so that its weight submerges the ice and
643    the snow is flooded, a simple mass conserving parameterization of
644    snowice formation (a flood-freeze algorithm following Archimedes'
645    principle) turns snow into ice until the ice surface is back at $z=0$
646    \citep{leppaeranta83}. The flood-freeze algorithm is enabled with the CPP-flag
647    \texttt{SEAICE\_ALLOW\_FLOODING} and turned on with run-time parameter
648    \texttt{SEAICEuseFlooding=.true.}.
649    
650    Effective ice thickness (ice volume per unit area,
651    $c\cdot{h}$), concentration $c$ and effective snow thickness
652    ($c\cdot{h}_{s}$) are advected by ice velocities:
653    \begin{equation}
654      \label{eq:advection}
655      \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) +
656      \Gamma_{X} + D_{X}
657    \end{equation}
658    where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the
659    diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$.
660    %
661    From the various advection scheme that are available in the MITgcm, we
662    choose flux-limited schemes \citep[multidimensional 2nd and 3rd-order
663    advection scheme with flux limiter][]{roe:85, hundsdorfer94} to
664    preserve sharp gradients and edges that are typical of sea ice
665    distributions and to rule out unphysical over- and undershoots
666    (negative thickness or concentration). These scheme conserve volume
667    and horizontal area and are unconditionally stable, so that we can set
668    $D_{X}=0$. Run-timeflags: \texttt{SEAICEadvScheme} (default=2),
669    \texttt{DIFF1} (default=0.004).
670    
671    There is considerable doubt about the reliability of a ``zero-layer''
672    thermodynamic model --- \citet{semtner84} found significant errors in
673    phase (one month lead) and amplitude ($\approx$50\%\,overestimate) in
674    such models --- so that today many sea ice models employ more complex
675    thermodynamics. The MITgcm sea ice model provides the option to use
676    the thermodynamics model of \citet{win00}, which in turn is based
677    on the 3-layer model of \citet{sem76} and which treats brine
678    content by means of enthalpy conservation. This scheme requires
679    additional state variables, namely the enthalpy of the two ice layers
680    (instead of effective ice salinity), to be advected by ice velocities.
681    %
682    The internal sea ice temperature is inferred from ice enthalpy.  To
683    avoid unphysical (negative) values for ice thickness and
684    concentration, a positive 2nd-order advection scheme with a SuperBee
685    flux limiter \citep{roe:85} is used in this study to advect all
686    sea-ice-related quantities of the \citet{win00} thermodynamic
687    model.  Because of the non-linearity of the advection scheme, care
688    must be taken in advecting these quantities: when simply using ice
689    velocity to advect enthalpy, the total energy (i.e., the volume
690    integral of enthalpy) is not conserved. Alternatively, one can advect
691    the energy content (i.e., product of ice-volume and enthalpy) but then
692    false enthalpy extrema can occur, which then leads to unrealistic ice
693    temperature.  In the currently implemented solution, the sea-ice mass
694    flux is used to advect the enthalpy in order to ensure conservation of
695    enthalpy and to prevent false enthalpy extrema.
696    
697  %----------------------------------------------------------------------  %----------------------------------------------------------------------
698    
699  \subsubsection{Key subroutines  \subsubsection{Key subroutines
700  \label{sec:pkg:seaice:subroutines}}  \label{sec:pkg:seaice:subroutines}}
701    
702  Top-level routine: \texttt{exf\_getforcing.F}  Top-level routine: \texttt{seaice\_model.F}
703    
704  {\footnotesize  {\footnotesize
705  \begin{verbatim}  \begin{verbatim}
# Line 237  c  o Line 750  c  o
750    
751  %----------------------------------------------------------------------  %----------------------------------------------------------------------
752    
753  \subsubsection{EXF diagnostics  \subsubsection{SEAICE diagnostics
754  \label{sec:pkg:seaice:diagnostics}}  \label{sec:pkg:seaice:diagnostics}}
755    
756  Diagnostics output is available via the diagnostics package  Diagnostics output is available via the diagnostics package
# Line 259  Table \ref{tab:pkg:seaice:diagnostics}. Line 772  Table \ref{tab:pkg:seaice:diagnostics}.
772   SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North   SIvice  |  1 |VV  |m/s             |SEAICE merid. ice velocity, >0 from South to North
773   SIhsnow |  1 |SM  |m               |SEAICE snow thickness   SIhsnow |  1 |SM  |m               |SEAICE snow thickness
774   SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity   SIhsalt |  1 |SM  |g/m^2           |SEAICE effective salinity
775   SIatmFW |  1 |SM  |m/s             |Net freshwater flux from the atmosphere (+=down)   SIatmFW |  1 |SM  |kg/m^2/s        |Net freshwater flux from the atmosphere (+=down)
776   SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel   SIuwind |  1 |SM  |m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel
777   SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel   SIvwind |  1 |SM  |m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel
778   SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel   SIfu    |  1 |UU  |N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel
779   SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel   SIfv    |  1 |VV  |N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel
780   SIempmr |  1 |SM  |m/s             |SEAICE upward freshwater flux, > 0 increases salt   SIempmr |  1 |SM  |kg/m^2/s        |SEAICE upward freshwater flux, > 0 increases salt
781   SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta   SIqnet  |  1 |SM  |W/m^2           |SEAICE upward heatflux, turb+rad, >0 decreases theta
782   SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta   SIqsw   |  1 |SM  |W/m^2           |SEAICE upward shortwave radiat., >0 decreases theta
783   SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit)   SIpress |  1 |SM  |m^2/s^2         |SEAICE strength (with upper and lower limit)
# Line 294  Table \ref{tab:pkg:seaice:diagnostics}. Line 807  Table \ref{tab:pkg:seaice:diagnostics}.
807   DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity   DFyESSLT|  1 |VV  |psu.m^2/s       |Meridional Diffusive Flux of seaice salinity
808  \end{verbatim}  \end{verbatim}
809  }  }
810  \caption{~}  \caption{Available diagnostics of the seaice-package}
811  \end{table}  \end{table}
812    
813    
# Line 307  Table \ref{tab:pkg:seaice:diagnostics}. Line 820  Table \ref{tab:pkg:seaice:diagnostics}.
820  \item{Labrador Sea experiment in lab\_sea verification directory. }  \item{Labrador Sea experiment in lab\_sea verification directory. }
821  \end{itemize}  \end{itemize}
822    
823    
824    %%% Local Variables:
825    %%% mode: latex
826    %%% TeX-master: "../manual"
827    %%% End:

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22