/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Contents of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Thu Jul 14 19:18:02 2005 UTC (20 years ago) by molod
Branch: MAIN
Changes since 1.7: +2133 -0 lines
File MIME type: application/x-tex
Add fizhi diag description to fizhi.tex, add gridalt.tex to part6, start fixing diag

1 \section{Fizhi: High-end Atmospheric Physics}
2 \label{sec:pkg:fizhi}
3 \begin{rawhtml}
4 <!-- CMIREDIR:package_fizhi: -->
5 \end{rawhtml}
6 \input{texinputs/epsf.tex}
7
8 \subsection{Introduction}
9 The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10 physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11 boundary layer turbulence, and land surface processes.
12
13 % *************************************************************************
14 % *************************************************************************
15
16 \subsection{Equations}
17
18 \subsubsection{Moist Convective Processes}
19
20 \paragraph{Sub-grid and Large-scale Convection}
21 \label{sec:fizhi:mc}
22
23 Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24 Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert
25 type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26 by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27
28 The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29 the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30 The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31 mass from the environment during ascent, and detraining all cloud air at the level of neutral
32 buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33 mass flux, is a linear function of height, expressed as:
34 \[
35 \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36 -{c_p \over {g}}\theta\lambda
37 \]
38 where we have used the hydrostatic equation written in the form:
39 \[
40 \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41 \]
42
43 The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44 detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45 buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46 to the saturation moist static energy of the environment, $h^*$. Following Moorthi and Suarez (1992),
47 $\lambda$ may be written as
48 \[
49 \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50 \]
51
52 where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53
54
55 The convective instability is measured in terms of the cloud work function $A$, defined as the
56 rate of change of cumulus kinetic energy. The cloud work function is
57 related to the buoyancy, or the difference
58 between the moist static energy in the cloud and in the environment:
59 \[
60 A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61 \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62 \]
63
64 where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65 and the subscript $c$ refers to the value inside the cloud.
66
67
68 To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69 the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70 by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71 \[
72 m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73 \]
74
75 where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76 unit cloud base mass flux, and is currently obtained by analytically differentiating the
77 expression for $A$ in time.
78 The rate of change of $A$ due to the generation by the large scale can be written as the
79 difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80 convective time step
81 $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82 computed by Lord (1982) from $in situ$ observations.
83
84
85 The predicted convective mass fluxes are used to solve grid-scale temperature
86 and moisture budget equations to determine the impact of convection on the large scale fields of
87 temperature (through latent heating and compensating subsidence) and moisture (through
88 precipitation and detrainment):
89 \[
90 \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91 \]
92 and
93 \[
94 \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95 \]
96 where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97
98 As an approximation to a full interaction between the different allowable subensembles,
99 many clouds are simulated frequently, each modifying the large scale environment some fraction
100 $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101 towards equillibrium.
102
103 In addition to the RAS cumulus convection scheme, the fizhi package employs a
104 Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which
105 correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106 formulation assumes that all cloud water is deposited into the detrainment level as rain.
107 All of the rain is available for re-evaporation, which begins in the level below detrainment.
108 The scheme accounts for some microphysics such as
109 the rainfall intensity, the drop size distribution, as well as the temperature,
110 pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111 in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112 which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113 for frozen precipitation.
114
115 Due to the increased vertical resolution near the surface, the lowest model
116 layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117 invoked (every ten simulated minutes),
118 a number of randomly chosen subensembles are checked for the possibility
119 of convection, from just above cloud base to 10 mb.
120
121 Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122 the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123 The large-scale precipitation re-evaporates during descent to partially saturate
124 lower layers in a process identical to the re-evaporation of convective rain.
125
126
127 \paragraph{Cloud Formation}
128 \label{sec:fizhi:clouds}
129
130 Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131 diagnostically as part of the cumulus and large-scale parameterizations.
132 Convective cloud fractions produced by RAS are proportional to the
133 detrained liquid water amount given by
134
135 \[
136 F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137 \]
138
139 where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140 A memory is associated with convective clouds defined by:
141
142 \[
143 F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144 \]
145
146 where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147 from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148 $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149
150 Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151 humidity:
152
153 \[
154 F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155 \]
156
157 where
158
159 \bqa
160 RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161 s & = & p/p_{surf} \nonumber \\
162 r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163 RH_{min} & = & 0.75 \nonumber \\
164 \alpha & = & 0.573285 \nonumber .
165 \eqa
166
167 These cloud fractions are suppressed, however, in regions where the convective
168 sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169 Figure (\ref{fig:fizhi:rhcrit}).
170
171 \begin{figure*}[htbp]
172 \vspace{0.4in}
173 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 \vspace{0.4in}
175 \caption [Critical Relative Humidity for Clouds.]
176 {Critical Relative Humidity for Clouds.}
177 \label{fig:fizhi:rhcrit}
178 \end{figure*}
179
180 The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181
182 \[
183 F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184 \]
185
186 Finally, cloud fractions are time-averaged between calls to the radiation packages.
187
188
189 \subsubsection{Radiation}
190
191 The parameterization of radiative heating in the fizhi package includes effects
192 from both shortwave and longwave processes.
193 Radiative fluxes are calculated at each
194 model edge-level in both up and down directions.
195 The heating rates/cooling rates are then obtained
196 from the vertical divergence of the net radiative fluxes.
197
198 The net flux is
199 \[
200 F = F^\uparrow - F^\downarrow
201 \]
202 where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203 the downward flux.
204
205 The heating rate due to the divergence of the radiative flux is given by
206 \[
207 \pp{\rho c_p T}{t} = - \pp{F}{z}
208 \]
209 or
210 \[
211 \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212 \]
213 where $g$ is the accelation due to gravity
214 and $c_p$ is the heat capacity of air at constant pressure.
215
216 The time tendency for Longwave
217 Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218 every three hours assuming a normalized incident solar radiation, and subsequently modified at
219 every model time step by the true incident radiation.
220 The solar constant value used in the package is equal to 1365 $W/m^2$
221 and a $CO_2$ mixing ratio of 330 ppm.
222 For the ozone mixing ratio, monthly mean zonally averaged
223 climatological values specified as a function
224 of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.
225
226
227 \paragraph{Shortwave Radiation}
228
229 The shortwave radiation package used in the package computes solar radiative
230 heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231 clouds, and aerosols and due to the
232 scattering by clouds, aerosols, and gases.
233 The shortwave radiative processes are described by
234 Chou (1990,1992). This shortwave package
235 uses the Delta-Eddington approximation to compute the
236 bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237 The transmittance and reflectance of diffuse radiation
238 follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).
239
240 Highly accurate heating rate calculations are obtained through the use
241 of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242 as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243 can be accurately computed in the ultraviolet region and the photosynthetically
244 active radiation (PAR) region.
245 The computation of solar flux in the infrared region is performed with a broadband
246 parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247 The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248 also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249
250 \begin{table}[htb]
251 \begin{center}
252 {\bf UV and Visible Spectral Regions} \\
253 \vspace{0.1in}
254 \begin{tabular}{|c|c|c|}
255 \hline
256 Region & Band & Wavelength (micron) \\ \hline
257 \hline
258 UV-C & 1. & .175 - .225 \\
259 & 2. & .225 - .245 \\
260 & & .260 - .280 \\
261 & 3. & .245 - .260 \\ \hline
262 UV-B & 4. & .280 - .295 \\
263 & 5. & .295 - .310 \\
264 & 6. & .310 - .320 \\ \hline
265 UV-A & 7. & .320 - .400 \\ \hline
266 PAR & 8. & .400 - .700 \\
267 \hline
268 \end{tabular}
269 \end{center}
270 \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271 \label{tab:fizhi:solar2}
272 \end{table}
273
274 \begin{table}[htb]
275 \begin{center}
276 {\bf Infrared Spectral Regions} \\
277 \vspace{0.1in}
278 \begin{tabular}{|c|c|c|}
279 \hline
280 Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281 \hline
282 1 & 1000-4400 & 2.27-10.0 \\
283 2 & 4400-8200 & 1.22-2.27 \\
284 3 & 8200-14300 & 0.70-1.22 \\
285 \hline
286 \end{tabular}
287 \end{center}
288 \caption{Infrared Spectral Regions used in shortwave radiation package.}
289 \label{tab:fizhi:solar1}
290 \end{table}
291
292 Within the shortwave radiation package,
293 both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294 Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295 Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296 In the fizhi package, the effective radius for water droplets is given as 10 microns,
297 while 65 microns is used for ice particles. The absorption due to aerosols is currently
298 set to zero.
299
300 To simplify calculations in a cloudy atmosphere, clouds are
301 grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302 Within each of the three regions, clouds are assumed maximally
303 overlapped, and the cloud cover of the group is the maximum
304 cloud cover of all the layers in the group. The optical thickness
305 of a given layer is then scaled for both the direct (as a function of the
306 solar zenith angle) and diffuse beam radiation
307 so that the grouped layer reflectance is the same as the original reflectance.
308 The solar flux is computed for each of the eight cloud realizations possible
309 (see Figure \ref{fig:fizhi:cloud}) within this
310 low/middle/high classification, and appropriately averaged to produce the net solar flux.
311
312 \begin{figure*}[htbp]
313 \vspace{0.4in}
314 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 }
316 \vspace{0.4in}
317 \caption {Low-Middle-High Cloud Configurations}
318 \label{fig:fizhi:cloud}
319 \end{figure*}
320
321
322 \paragraph{Longwave Radiation}
323
324 The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).
325 As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326 dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327 configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328
329
330 \begin{table}[htb]
331 \begin{center}
332 {\bf IR Spectral Bands} \\
333 \vspace{0.1in}
334 \begin{tabular}{|c|c|l|c| }
335 \hline
336 Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337 \hline
338 1 & 0-340 & H$_2$O line & T \\ \hline
339 2 & 340-540 & H$_2$O line & T \\ \hline
340 3a & 540-620 & H$_2$O line & K \\
341 3b & 620-720 & H$_2$O continuum & S \\
342 3b & 720-800 & CO$_2$ & T \\ \hline
343 4 & 800-980 & H$_2$O line & K \\
344 & & H$_2$O continuum & S \\ \hline
345 & & H$_2$O line & K \\
346 5 & 980-1100 & H$_2$O continuum & S \\
347 & & O$_3$ & T \\ \hline
348 6 & 1100-1380 & H$_2$O line & K \\
349 & & H$_2$O continuum & S \\ \hline
350 7 & 1380-1900 & H$_2$O line & T \\ \hline
351 8 & 1900-3000 & H$_2$O line & K \\ \hline
352 \hline
353 \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354 \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355 \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356 \hline
357 \end{tabular}
358 \end{center}
359 \vspace{0.1in}
360 \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}
361 \label{tab:fizhi:longwave}
362 \end{table}
363
364
365 The longwave radiation package accurately computes cooling rates for the middle and
366 lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367 rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368 neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369 nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370 of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371 in the upward flux at the top of the atmosphere.
372
373 Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374 three regions catagorized as low/middle/high.
375 The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376 assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377
378 \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379
380 Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381 a group is given by:
382
383 \[ P_{group} = 1 - F_{max} , \]
384
385 where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386 For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387 assigned.
388
389
390 \paragraph{Cloud-Radiation Interaction}
391 \label{sec:fizhi:radcloud}
392
393 The cloud fractions and diagnosed cloud liquid water produced by moist processes
394 within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395 The cloud optical thickness associated with large-scale cloudiness is made
396 proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397 Two values are used corresponding to cloud ice particles and water droplets.
398 The range of optical thickness for these clouds is given as
399
400 \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401 \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402
403 The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404 in temperature:
405
406 \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407
408 The resulting optical depth associated with large-scale cloudiness is given as
409
410 \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411
412 The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413
414 \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415
416 The total optical depth in a given model layer is computed as a weighted average between
417 the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418 layer:
419
420 \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421
422 where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423 processes described in Section \ref{sec:fizhi:clouds}.
424 The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425
426 The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427 The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428 hours). Therefore, in a time-averaged sense, both convective and large-scale
429 cloudiness can exist in a given grid-box.
430
431 \subsubsection{Turbulence}
432 Turbulence is parameterized in the fizhi package to account for its contribution to the
433 vertical exchange of heat, moisture, and momentum.
434 The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
435 time scheme with an internal time step of 5 minutes.
436 The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
437 the diffusion equations:
438
439 \[
440 {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
441 = {\pp{}{z} }{(K_m \pp{u}{z})}
442 \]
443 \[
444 {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
445 = {\pp{}{z} }{(K_m \pp{v}{z})}
446 \]
447 \[
448 {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
449 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
450 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
451 \]
452 \[
453 {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
454 = {\pp{}{z} }{(K_h \pp{q}{z})}
455 \]
456
457 Within the atmosphere, the time evolution
458 of second turbulent moments is explicitly modeled by representing the third moments in terms of
459 the first and second moments. This approach is known as a second-order closure modeling.
460 To simplify and streamline the computation of the second moments, the level 2.5 assumption
461 of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent
462 kinetic energy (TKE),
463
464 \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
465
466 is solved prognostically and the other second moments are solved diagnostically.
467 The prognostic equation for TKE allows the scheme to simulate
468 some of the transient and diffusive effects in the turbulence. The TKE budget equation
469 is solved numerically using an implicit backward computation of the terms linear in $q^2$
470 and is written:
471
472 \[
473 {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
474 ({\h}q^2)} })} =
475 {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
476 { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
477 - { q^3 \over {{\Lambda} _1} }
478 \]
479
480 where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
481 ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
482 temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
483 coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
484 multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
485 of the vertical structure of the turbulent layers.
486
487 The first term on the left-hand side represents the time rate of change of TKE, and
488 the second term is a representation of the triple correlation, or turbulent
489 transport term. The first three terms on the right-hand side represent the sources of
490 TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
491 of TKE.
492
493 In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
494 wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
495 $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of Helfand
496 and Labraga (1988), these diffusion coefficients are expressed as
497
498 \[
499 K_h
500 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
501 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
502 \]
503
504 and
505
506 \[
507 K_m
508 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
509 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
510 \]
511
512 where the subscript $e$ refers to the value under conditions of local equillibrium
513 (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
514 vertical structure of the atmosphere,
515 and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
516 wind shear parameters, respectively.
517 Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
518 are functions of the Richardson number:
519
520 \[
521 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
522 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
523 \]
524
525 Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
526 indicate dominantly unstable shear, and large positive values indicate dominantly stable
527 stratification.
528
529 Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
530 which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
531 are calculated using stability-dependant functions based on Monin-Obukhov theory:
532 \[
533 {K_m} (surface) = C_u \times u_* = C_D W_s
534 \]
535 and
536 \[
537 {K_h} (surface) = C_t \times u_* = C_H W_s
538 \]
539 where $u_*=C_uW_s$ is the surface friction velocity,
540 $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
541 and $W_s$ is the magnitude of the surface layer wind.
542
543 $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
544 similarity functions:
545 \[
546 {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
547 \]
548 where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
549 wind shear given by
550 \[
551 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
552 \]
553 Here $\zeta$ is the non-dimensional stability parameter, and
554 $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
555 the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
556 layers.
557
558 $C_t$ is the dimensionless exchange coefficient for heat and
559 moisture from the surface layer similarity functions:
560 \[
561 {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
562 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
563 { k \over { (\psi_{h} + \psi_{g}) } }
564 \]
565 where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
566 \[
567 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
568 \]
569 Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
570 the temperature and moisture gradients, and is specified differently for stable and unstable
571 layers according to Helfand and Schubert, 1995.
572
573 $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
574 which is the mosstly laminar region between the surface and the tops of the roughness
575 elements, in which temperature and moisture gradients can be quite large.
576 Based on Yaglom and Kader (1974):
577 \[
578 \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
579 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
580 \]
581 where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
582 surface roughness length, and the subscript {\em ref} refers to a reference value.
583 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
584
585 The surface roughness length over oceans is is a function of the surface-stress velocity,
586 \[
587 {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
588 \]
589 where the constants are chosen to interpolate between the reciprocal relation of
590 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
591 for moderate to large winds. Roughness lengths over land are specified
592 from the climatology of Dorman and Sellers (1989).
593
594 For an unstable surface layer, the stability functions, chosen to interpolate between the
595 condition of small values of $\beta$ and the convective limit, are the KEYPS function
596 (Panofsky, 1973) for momentum, and its generalization for heat and moisture:
597 \[
598 {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
599 {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
600 \]
601 The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
602 speed approaches zero.
603
604 For a stable surface layer, the stability functions are the observationally
605 based functions of Clarke (1970), slightly modified for
606 the momemtum flux:
607 \[
608 {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
609 (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
610 {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
611 (1+ 5 {{\zeta}_1}) } } .
612 \]
613 The moisture flux also depends on a specified evapotranspiration
614 coefficient, set to unity over oceans and dependant on the climatological ground wetness over
615 land.
616
617 Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
618 using an implicit backward operator.
619
620 \paragraph{Atmospheric Boundary Layer}
621
622 The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
623 level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
624 The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
625
626 \paragraph{Surface Energy Budget}
627
628 The ground temperature equation is solved as part of the turbulence package
629 using a backward implicit time differencing scheme:
630 \[
631 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
632 \]
633 where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
634 net surface upward longwave radiative flux.
635
636 $H$ is the upward sensible heat flux, given by:
637 \[
638 {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
639 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
640 \]
641 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
642 heat of air at constant pressure, and $\theta$ represents the potential temperature
643 of the surface and of the lowest $\sigma$-level, respectively.
644
645 The upward latent heat flux, $LE$, is given by
646 \[
647 {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
648 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
649 \]
650 where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
651 L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
652 humidity of the surface and of the lowest $\sigma$-level, respectively.
653
654 The heat conduction through sea ice, $Q_{ice}$, is given by
655 \[
656 {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
657 \]
658 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
659 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
660 surface temperature of the ice.
661
662 $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
663 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
664 \[
665 C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
666 {86400 \over 2 \pi} } \, \, .
667 \]
668 Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
669 {cm \over {^oK}}$,
670 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
671 by $2 \pi$ $radians/
672 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
673 is a function of the ground wetness, $W$.
674
675 \subsubsection{Land Surface Processes}
676
677 \paragraph{Surface Type}
678 The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
679 philosophy which allows multiple ``tiles'', or multiple surface types, in any one
680 grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications
681 are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
682 cell occupied by any surface type were derived from the surface classification of
683 Defries and Townshend (1994), and information about the location of permanent
684 ice was obtained from the classifications of Dorman and Sellers (1989).
685 The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
686 The determination of the land or sea category of surface type was made from NCAR's
687 10 minute by 10 minute Navy topography
688 dataset, which includes information about the percentage of water-cover at any point.
689 The data were averaged to the model's \fxf and \txt grid resolutions,
690 and any grid-box whose averaged water percentage was $\geq 60 \%$ was
691 defined as a water point. The \fxf grid Land-Water designation was further modified
692 subjectively to ensure sufficient representation from small but isolated land and water regions.
693
694 \begin{table}
695 \begin{center}
696 {\bf Surface Type Designation} \\
697 \vspace{0.1in}
698 \begin{tabular}{ |c|l| }
699 \hline
700 Type & Vegetation Designation \\ \hline
701 \hline
702 1 & Broadleaf Evergreen Trees \\ \hline
703 2 & Broadleaf Deciduous Trees \\ \hline
704 3 & Needleleaf Trees \\ \hline
705 4 & Ground Cover \\ \hline
706 5 & Broadleaf Shrubs \\ \hline
707 6 & Dwarf Trees (Tundra) \\ \hline
708 7 & Bare Soil \\ \hline
709 8 & Desert (Bright) \\ \hline
710 9 & Glacier \\ \hline
711 10 & Desert (Dark) \\ \hline
712 100 & Ocean \\ \hline
713 \end{tabular}
714 \end{center}
715 \caption{Surface type designations used to compute surface roughness (over land)
716 and surface albedo.}
717 \label{tab:fizhi:surftype}
718 \end{table}
719
720
721 \begin{figure*}[htbp]
722 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
723 \vspace{0.3in}
724 \caption {Surface Type Compinations at \txt resolution.}
725 \label{fig:fizhi:surftype}
726 \end{figure*}
727
728 \begin{figure*}[htbp]
729 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
730 \vspace{0.3in}
731 \caption {Surface Type Descriptions.}
732 \label{fig:fizhi:surftype.desc}
733 \end{figure*}
734
735
736 \paragraph{Surface Roughness}
737 The surface roughness length over oceans is computed iteratively with the wind
738 stress by the surface layer parameterization (Helfand and Schubert, 1991).
739 It employs an interpolation between the functions of Large and Pond (1981)
740 for high winds and of Kondo (1975) for weak winds.
741
742
743 \paragraph{Albedo}
744 The surface albedo computation, described in Koster and Suarez (1991),
745 employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
746 Model which distinguishes between the direct and diffuse albedos in the visible
747 and in the near infra-red spectral ranges. The albedos are functions of the observed
748 leaf area index (a description of the relative orientation of the leaves to the
749 sun), the greenness fraction, the vegetation type, and the solar zenith angle.
750 Modifications are made to account for the presence of snow, and its depth relative
751 to the height of the vegetation elements.
752
753 \subsubsection{Gravity Wave Drag}
754 The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).
755 This scheme is a modified version of Vernekar et al. (1992),
756 which was based on Alpert et al. (1988) and Helfand et al. (1987).
757 In this version, the gravity wave stress at the surface is
758 based on that derived by Pierrehumbert (1986) and is given by:
759
760 \bq
761 |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
762 \eq
763
764 where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
765 surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
766 and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
767 A modification introduced by Zhou et al. allows for the momentum flux to
768 escape through the top of the model, although this effect is small for the current 70-level model.
769 The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
770
771 The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).
772 Experiments using the gravity wave drag parameterization yielded significant and
773 beneficial impacts on both the time-mean flow and the transient statistics of the
774 a GCM climatology, and have eliminated most of the worst dynamically driven biases
775 in the a GCM simulation.
776 An examination of the angular momentum budget during climate runs indicates that the
777 resulting gravity wave torque is similar to the data-driven torque produced by a data
778 assimilation which was performed without gravity
779 wave drag. It was shown that the inclusion of gravity wave drag results in
780 large changes in both the mean flow and in eddy fluxes.
781 The result is a more
782 accurate simulation of surface stress (through a reduction in the surface wind strength),
783 of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
784 convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
785
786
787 \subsubsection{Boundary Conditions and other Input Data}
788
789 Required fields which are not explicitly predicted or diagnosed during model execution must
790 either be prescribed internally or obtained from external data sets. In the fizhi package these
791 fields include: sea surface temperature, sea ice estent, surface geopotential variance,
792 vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
793 and stratospheric moisture.
794
795 Boundary condition data sets are available at the model's \fxf and \txt
796 resolutions for either climatological or yearly varying conditions.
797 Any frequency of boundary condition data can be used in the fizhi package;
798 however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
799 The time mean values are interpolated during each model timestep to the
800 current time. Future model versions will incorporate boundary conditions at
801 higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
802
803 \begin{table}[htb]
804 \begin{center}
805 {\bf Fizhi Input Datasets} \\
806 \vspace{0.1in}
807 \begin{tabular}{|l|c|r|} \hline
808 \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
809 Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
810 Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
811 Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
812 Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
813 Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
814 Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
815 \end{tabular}
816 \end{center}
817 \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
818 current years and frequencies available.}
819 \label{tab:fizhi:bcdata}
820 \end{table}
821
822
823 \paragraph{Topography and Topography Variance}
824
825 Surface geopotential heights are provided from an averaging of the Navy 10 minute
826 by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
827 model's grid resolution. The original topography is first rotated to the proper grid-orientation
828 which is being run, and then
829 averages the data to the model resolution.
830 The averaged topography is then passed through a Lanczos (1966) filter in both dimensions
831 which removes the smallest
832 scales while inhibiting Gibbs phenomena.
833
834 In one dimension, we may define a cyclic function in $x$ as:
835 \begin{equation}
836 f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)
837 \label{eq:fizhi:filt}
838 \end{equation}
839 where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.
840 Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a
841 $2 \Delta x$ region as:
842
843 \begin{equation}
844 \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}
845 \label{eq:fizhi:fave1}
846 \end{equation}
847
848 Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:
849
850 \begin{equation}
851 \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}
852 \sum_{k=1}^N \left [
853 \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -
854 \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}
855 \right]
856 \end{equation}
857 or
858
859 \begin{equation}
860 \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}
861 \left( a_k \cos(kx) + b_k \sin(kx) \right)
862 \label{eq:fizhi:fave2}
863 \end{equation}
864
865 Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response
866 function ${\sin(k\Delta x) \over {k \Delta x}}$. This may be compared with an $mth$-order
867 Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,
868 shown in Figure \ref{fig:fizhi:lanczos}.
869 It should be noted that negative values in the topography resulting from
870 the filtering procedure are {\em not} filled.
871
872 \begin{figure*}[htbp]
873 \centerline{ \epsfysize=7.0in \epsfbox{part6/lanczos.ps}}
874 \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter
875 response functions for $m$ = 2, 4, and 8. }
876 \end{figure*}
877
878 The standard deviation of the subgrid-scale topography
879 is computed from a modified version of the the Navy 10 minute by 10 minute dataset.
880 The 10 minute by 10 minute topography is passed through a wavelet
881 filter in both dimensions which removes the scale smaller than 20 minutes.
882 The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then
883 re-interpolated back to the 10 minute by 10 minute resolution.
884 The sub-grid scale variance is constructed based on this smoothed dataset.
885
886
887 \paragraph{Upper Level Moisture}
888 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
889 Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
890 as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
891 model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
892 the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
893 a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
894
895
896 \subsection{Fizhi Diagnostics}
897
898 \subsubsection{Fizhi Diagnostic Menu}
899 \label{sec:fizhi-diagnostics:menu}
900
901 \begin{tabular}{llll}
902 \hline\hline
903 NAME & UNITS & LEVELS & DESCRIPTION \\
904 \hline
905
906 &\\
907 UFLUX & $Newton/m^2$ & 1
908 &\begin{minipage}[t]{3in}
909 {Surface U-Wind Stress on the atmosphere}
910 \end{minipage}\\
911 VFLUX & $Newton/m^2$ & 1
912 &\begin{minipage}[t]{3in}
913 {Surface V-Wind Stress on the atmosphere}
914 \end{minipage}\\
915 HFLUX & $Watts/m^2$ & 1
916 &\begin{minipage}[t]{3in}
917 {Surface Flux of Sensible Heat}
918 \end{minipage}\\
919 EFLUX & $Watts/m^2$ & 1
920 &\begin{minipage}[t]{3in}
921 {Surface Flux of Latent Heat}
922 \end{minipage}\\
923 QICE & $Watts/m^2$ & 1
924 &\begin{minipage}[t]{3in}
925 {Heat Conduction through Sea-Ice}
926 \end{minipage}\\
927 RADLWG & $Watts/m^2$ & 1
928 &\begin{minipage}[t]{3in}
929 {Net upward LW flux at the ground}
930 \end{minipage}\\
931 RADSWG & $Watts/m^2$ & 1
932 &\begin{minipage}[t]{3in}
933 {Net downward SW flux at the ground}
934 \end{minipage}\\
935 RI & $dimensionless$ & Nrphys
936 &\begin{minipage}[t]{3in}
937 {Richardson Number}
938 \end{minipage}\\
939 CT & $dimensionless$ & 1
940 &\begin{minipage}[t]{3in}
941 {Surface Drag coefficient for T and Q}
942 \end{minipage}\\
943 CU & $dimensionless$ & 1
944 &\begin{minipage}[t]{3in}
945 {Surface Drag coefficient for U and V}
946 \end{minipage}\\
947 ET & $m^2/sec$ & Nrphys
948 &\begin{minipage}[t]{3in}
949 {Diffusivity coefficient for T and Q}
950 \end{minipage}\\
951 EU & $m^2/sec$ & Nrphys
952 &\begin{minipage}[t]{3in}
953 {Diffusivity coefficient for U and V}
954 \end{minipage}\\
955 TURBU & $m/sec/day$ & Nrphys
956 &\begin{minipage}[t]{3in}
957 {U-Momentum Changes due to Turbulence}
958 \end{minipage}\\
959 TURBV & $m/sec/day$ & Nrphys
960 &\begin{minipage}[t]{3in}
961 {V-Momentum Changes due to Turbulence}
962 \end{minipage}\\
963 TURBT & $deg/day$ & Nrphys
964 &\begin{minipage}[t]{3in}
965 {Temperature Changes due to Turbulence}
966 \end{minipage}\\
967 TURBQ & $g/kg/day$ & Nrphys
968 &\begin{minipage}[t]{3in}
969 {Specific Humidity Changes due to Turbulence}
970 \end{minipage}\\
971 MOISTT & $deg/day$ & Nrphys
972 &\begin{minipage}[t]{3in}
973 {Temperature Changes due to Moist Processes}
974 \end{minipage}\\
975 MOISTQ & $g/kg/day$ & Nrphys
976 &\begin{minipage}[t]{3in}
977 {Specific Humidity Changes due to Moist Processes}
978 \end{minipage}\\
979 RADLW & $deg/day$ & Nrphys
980 &\begin{minipage}[t]{3in}
981 {Net Longwave heating rate for each level}
982 \end{minipage}\\
983 RADSW & $deg/day$ & Nrphys
984 &\begin{minipage}[t]{3in}
985 {Net Shortwave heating rate for each level}
986 \end{minipage}\\
987 PREACC & $mm/day$ & 1
988 &\begin{minipage}[t]{3in}
989 {Total Precipitation}
990 \end{minipage}\\
991 PRECON & $mm/day$ & 1
992 &\begin{minipage}[t]{3in}
993 {Convective Precipitation}
994 \end{minipage}\\
995 TUFLUX & $Newton/m^2$ & Nrphys
996 &\begin{minipage}[t]{3in}
997 {Turbulent Flux of U-Momentum}
998 \end{minipage}\\
999 TVFLUX & $Newton/m^2$ & Nrphys
1000 &\begin{minipage}[t]{3in}
1001 {Turbulent Flux of V-Momentum}
1002 \end{minipage}\\
1003 TTFLUX & $Watts/m^2$ & Nrphys
1004 &\begin{minipage}[t]{3in}
1005 {Turbulent Flux of Sensible Heat}
1006 \end{minipage}\\
1007 \end{tabular}
1008
1009 \newpage
1010 \vspace*{\fill}
1011 \begin{tabular}{llll}
1012 \hline\hline
1013 NAME & UNITS & LEVELS & DESCRIPTION \\
1014 \hline
1015
1016 &\\
1017 TQFLUX & $Watts/m^2$ & Nrphys
1018 &\begin{minipage}[t]{3in}
1019 {Turbulent Flux of Latent Heat}
1020 \end{minipage}\\
1021 CN & $dimensionless$ & 1
1022 &\begin{minipage}[t]{3in}
1023 {Neutral Drag Coefficient}
1024 \end{minipage}\\
1025 WINDS & $m/sec$ & 1
1026 &\begin{minipage}[t]{3in}
1027 {Surface Wind Speed}
1028 \end{minipage}\\
1029 DTSRF & $deg$ & 1
1030 &\begin{minipage}[t]{3in}
1031 {Air/Surface virtual temperature difference}
1032 \end{minipage}\\
1033 TG & $deg$ & 1
1034 &\begin{minipage}[t]{3in}
1035 {Ground temperature}
1036 \end{minipage}\\
1037 TS & $deg$ & 1
1038 &\begin{minipage}[t]{3in}
1039 {Surface air temperature (Adiabatic from lowest model layer)}
1040 \end{minipage}\\
1041 DTG & $deg$ & 1
1042 &\begin{minipage}[t]{3in}
1043 {Ground temperature adjustment}
1044 \end{minipage}\\
1045
1046 QG & $g/kg$ & 1
1047 &\begin{minipage}[t]{3in}
1048 {Ground specific humidity}
1049 \end{minipage}\\
1050 QS & $g/kg$ & 1
1051 &\begin{minipage}[t]{3in}
1052 {Saturation surface specific humidity}
1053 \end{minipage}\\
1054 TGRLW & $deg$ & 1
1055 &\begin{minipage}[t]{3in}
1056 {Instantaneous ground temperature used as input to the
1057 Longwave radiation subroutine}
1058 \end{minipage}\\
1059 ST4 & $Watts/m^2$ & 1
1060 &\begin{minipage}[t]{3in}
1061 {Upward Longwave flux at the ground ($\sigma T^4$)}
1062 \end{minipage}\\
1063 OLR & $Watts/m^2$ & 1
1064 &\begin{minipage}[t]{3in}
1065 {Net upward Longwave flux at the top of the model}
1066 \end{minipage}\\
1067 OLRCLR & $Watts/m^2$ & 1
1068 &\begin{minipage}[t]{3in}
1069 {Net upward clearsky Longwave flux at the top of the model}
1070 \end{minipage}\\
1071 LWGCLR & $Watts/m^2$ & 1
1072 &\begin{minipage}[t]{3in}
1073 {Net upward clearsky Longwave flux at the ground}
1074 \end{minipage}\\
1075 LWCLR & $deg/day$ & Nrphys
1076 &\begin{minipage}[t]{3in}
1077 {Net clearsky Longwave heating rate for each level}
1078 \end{minipage}\\
1079 TLW & $deg$ & Nrphys
1080 &\begin{minipage}[t]{3in}
1081 {Instantaneous temperature used as input to the Longwave radiation
1082 subroutine}
1083 \end{minipage}\\
1084 SHLW & $g/g$ & Nrphys
1085 &\begin{minipage}[t]{3in}
1086 {Instantaneous specific humidity used as input to the Longwave radiation
1087 subroutine}
1088 \end{minipage}\\
1089 OZLW & $g/g$ & Nrphys
1090 &\begin{minipage}[t]{3in}
1091 {Instantaneous ozone used as input to the Longwave radiation
1092 subroutine}
1093 \end{minipage}\\
1094 CLMOLW & $0-1$ & Nrphys
1095 &\begin{minipage}[t]{3in}
1096 {Maximum overlap cloud fraction used in the Longwave radiation
1097 subroutine}
1098 \end{minipage}\\
1099 CLDTOT & $0-1$ & Nrphys
1100 &\begin{minipage}[t]{3in}
1101 {Total cloud fraction used in the Longwave and Shortwave radiation
1102 subroutines}
1103 \end{minipage}\\
1104 LWGDOWN & $Watts/m^2$ & 1
1105 &\begin{minipage}[t]{3in}
1106 {Downwelling Longwave radiation at the ground}
1107 \end{minipage}\\
1108 GWDT & $deg/day$ & Nrphys
1109 &\begin{minipage}[t]{3in}
1110 {Temperature tendency due to Gravity Wave Drag}
1111 \end{minipage}\\
1112 RADSWT & $Watts/m^2$ & 1
1113 &\begin{minipage}[t]{3in}
1114 {Incident Shortwave radiation at the top of the atmosphere}
1115 \end{minipage}\\
1116 TAUCLD & $per 100 mb$ & Nrphys
1117 &\begin{minipage}[t]{3in}
1118 {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1119 \end{minipage}\\
1120 TAUCLDC & $Number$ & Nrphys
1121 &\begin{minipage}[t]{3in}
1122 {Cloud Optical Depth Counter}
1123 \end{minipage}\\
1124 \end{tabular}
1125 \vfill
1126
1127 \newpage
1128 \vspace*{\fill}
1129 \begin{tabular}{llll}
1130 \hline\hline
1131 NAME & UNITS & LEVELS & DESCRIPTION \\
1132 \hline
1133
1134 &\\
1135 CLDLOW & $0-1$ & Nrphys
1136 &\begin{minipage}[t]{3in}
1137 {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1138 \end{minipage}\\
1139 EVAP & $mm/day$ & 1
1140 &\begin{minipage}[t]{3in}
1141 {Surface evaporation}
1142 \end{minipage}\\
1143 DPDT & $hPa/day$ & 1
1144 &\begin{minipage}[t]{3in}
1145 {Surface Pressure tendency}
1146 \end{minipage}\\
1147 UAVE & $m/sec$ & Nrphys
1148 &\begin{minipage}[t]{3in}
1149 {Average U-Wind}
1150 \end{minipage}\\
1151 VAVE & $m/sec$ & Nrphys
1152 &\begin{minipage}[t]{3in}
1153 {Average V-Wind}
1154 \end{minipage}\\
1155 TAVE & $deg$ & Nrphys
1156 &\begin{minipage}[t]{3in}
1157 {Average Temperature}
1158 \end{minipage}\\
1159 QAVE & $g/kg$ & Nrphys
1160 &\begin{minipage}[t]{3in}
1161 {Average Specific Humidity}
1162 \end{minipage}\\
1163 OMEGA & $hPa/day$ & Nrphys
1164 &\begin{minipage}[t]{3in}
1165 {Vertical Velocity}
1166 \end{minipage}\\
1167 DUDT & $m/sec/day$ & Nrphys
1168 &\begin{minipage}[t]{3in}
1169 {Total U-Wind tendency}
1170 \end{minipage}\\
1171 DVDT & $m/sec/day$ & Nrphys
1172 &\begin{minipage}[t]{3in}
1173 {Total V-Wind tendency}
1174 \end{minipage}\\
1175 DTDT & $deg/day$ & Nrphys
1176 &\begin{minipage}[t]{3in}
1177 {Total Temperature tendency}
1178 \end{minipage}\\
1179 DQDT & $g/kg/day$ & Nrphys
1180 &\begin{minipage}[t]{3in}
1181 {Total Specific Humidity tendency}
1182 \end{minipage}\\
1183 VORT & $10^{-4}/sec$ & Nrphys
1184 &\begin{minipage}[t]{3in}
1185 {Relative Vorticity}
1186 \end{minipage}\\
1187 DTLS & $deg/day$ & Nrphys
1188 &\begin{minipage}[t]{3in}
1189 {Temperature tendency due to Stratiform Cloud Formation}
1190 \end{minipage}\\
1191 DQLS & $g/kg/day$ & Nrphys
1192 &\begin{minipage}[t]{3in}
1193 {Specific Humidity tendency due to Stratiform Cloud Formation}
1194 \end{minipage}\\
1195 USTAR & $m/sec$ & 1
1196 &\begin{minipage}[t]{3in}
1197 {Surface USTAR wind}
1198 \end{minipage}\\
1199 Z0 & $m$ & 1
1200 &\begin{minipage}[t]{3in}
1201 {Surface roughness}
1202 \end{minipage}\\
1203 FRQTRB & $0-1$ & Nrphys-1
1204 &\begin{minipage}[t]{3in}
1205 {Frequency of Turbulence}
1206 \end{minipage}\\
1207 PBL & $mb$ & 1
1208 &\begin{minipage}[t]{3in}
1209 {Planetary Boundary Layer depth}
1210 \end{minipage}\\
1211 SWCLR & $deg/day$ & Nrphys
1212 &\begin{minipage}[t]{3in}
1213 {Net clearsky Shortwave heating rate for each level}
1214 \end{minipage}\\
1215 OSR & $Watts/m^2$ & 1
1216 &\begin{minipage}[t]{3in}
1217 {Net downward Shortwave flux at the top of the model}
1218 \end{minipage}\\
1219 OSRCLR & $Watts/m^2$ & 1
1220 &\begin{minipage}[t]{3in}
1221 {Net downward clearsky Shortwave flux at the top of the model}
1222 \end{minipage}\\
1223 CLDMAS & $kg / m^2$ & Nrphys
1224 &\begin{minipage}[t]{3in}
1225 {Convective cloud mass flux}
1226 \end{minipage}\\
1227 UAVE & $m/sec$ & Nrphys
1228 &\begin{minipage}[t]{3in}
1229 {Time-averaged $u-Wind$}
1230 \end{minipage}\\
1231 \end{tabular}
1232 \vfill
1233
1234 \newpage
1235 \vspace*{\fill}
1236 \begin{tabular}{llll}
1237 \hline\hline
1238 NAME & UNITS & LEVELS & DESCRIPTION \\
1239 \hline
1240
1241 &\\
1242 VAVE & $m/sec$ & Nrphys
1243 &\begin{minipage}[t]{3in}
1244 {Time-averaged $v-Wind$}
1245 \end{minipage}\\
1246 TAVE & $deg$ & Nrphys
1247 &\begin{minipage}[t]{3in}
1248 {Time-averaged $Temperature$}
1249 \end{minipage}\\
1250 QAVE & $g/g$ & Nrphys
1251 &\begin{minipage}[t]{3in}
1252 {Time-averaged $Specific \, \, Humidity$}
1253 \end{minipage}\\
1254 RFT & $deg/day$ & Nrphys
1255 &\begin{minipage}[t]{3in}
1256 {Temperature tendency due Rayleigh Friction}
1257 \end{minipage}\\
1258 PS & $mb$ & 1
1259 &\begin{minipage}[t]{3in}
1260 {Surface Pressure}
1261 \end{minipage}\\
1262 QQAVE & $(m/sec)^2$ & Nrphys
1263 &\begin{minipage}[t]{3in}
1264 {Time-averaged $Turbulent Kinetic Energy$}
1265 \end{minipage}\\
1266 SWGCLR & $Watts/m^2$ & 1
1267 &\begin{minipage}[t]{3in}
1268 {Net downward clearsky Shortwave flux at the ground}
1269 \end{minipage}\\
1270 PAVE & $mb$ & 1
1271 &\begin{minipage}[t]{3in}
1272 {Time-averaged Surface Pressure}
1273 \end{minipage}\\
1274 DIABU & $m/sec/day$ & Nrphys
1275 &\begin{minipage}[t]{3in}
1276 {Total Diabatic forcing on $u-Wind$}
1277 \end{minipage}\\
1278 DIABV & $m/sec/day$ & Nrphys
1279 &\begin{minipage}[t]{3in}
1280 {Total Diabatic forcing on $v-Wind$}
1281 \end{minipage}\\
1282 DIABT & $deg/day$ & Nrphys
1283 &\begin{minipage}[t]{3in}
1284 {Total Diabatic forcing on $Temperature$}
1285 \end{minipage}\\
1286 DIABQ & $g/kg/day$ & Nrphys
1287 &\begin{minipage}[t]{3in}
1288 {Total Diabatic forcing on $Specific \, \, Humidity$}
1289 \end{minipage}\\
1290 RFU & $m/sec/day$ & Nrphys
1291 &\begin{minipage}[t]{3in}
1292 {U-Wind tendency due to Rayleigh Friction}
1293 \end{minipage}\\
1294 RFV & $m/sec/day$ & Nrphys
1295 &\begin{minipage}[t]{3in}
1296 {V-Wind tendency due to Rayleigh Friction}
1297 \end{minipage}\\
1298 GWDU & $m/sec/day$ & Nrphys
1299 &\begin{minipage}[t]{3in}
1300 {U-Wind tendency due to Gravity Wave Drag}
1301 \end{minipage}\\
1302 GWDU & $m/sec/day$ & Nrphys
1303 &\begin{minipage}[t]{3in}
1304 {V-Wind tendency due to Gravity Wave Drag}
1305 \end{minipage}\\
1306 GWDUS & $N/m^2$ & 1
1307 &\begin{minipage}[t]{3in}
1308 {U-Wind Gravity Wave Drag Stress at Surface}
1309 \end{minipage}\\
1310 GWDVS & $N/m^2$ & 1
1311 &\begin{minipage}[t]{3in}
1312 {V-Wind Gravity Wave Drag Stress at Surface}
1313 \end{minipage}\\
1314 GWDUT & $N/m^2$ & 1
1315 &\begin{minipage}[t]{3in}
1316 {U-Wind Gravity Wave Drag Stress at Top}
1317 \end{minipage}\\
1318 GWDVT & $N/m^2$ & 1
1319 &\begin{minipage}[t]{3in}
1320 {V-Wind Gravity Wave Drag Stress at Top}
1321 \end{minipage}\\
1322 LZRAD & $mg/kg$ & Nrphys
1323 &\begin{minipage}[t]{3in}
1324 {Estimated Cloud Liquid Water used in Radiation}
1325 \end{minipage}\\
1326 \end{tabular}
1327 \vfill
1328
1329 \newpage
1330 \vspace*{\fill}
1331 \begin{tabular}{llll}
1332 \hline\hline
1333 NAME & UNITS & LEVELS & DESCRIPTION \\
1334 \hline
1335
1336 &\\
1337 SLP & $mb$ & 1
1338 &\begin{minipage}[t]{3in}
1339 {Time-averaged Sea-level Pressure}
1340 \end{minipage}\\
1341 CLDFRC & $0-1$ & 1
1342 &\begin{minipage}[t]{3in}
1343 {Total Cloud Fraction}
1344 \end{minipage}\\
1345 TPW & $gm/cm^2$ & 1
1346 &\begin{minipage}[t]{3in}
1347 {Precipitable water}
1348 \end{minipage}\\
1349 U2M & $m/sec$ & 1
1350 &\begin{minipage}[t]{3in}
1351 {U-Wind at 2 meters}
1352 \end{minipage}\\
1353 V2M & $m/sec$ & 1
1354 &\begin{minipage}[t]{3in}
1355 {V-Wind at 2 meters}
1356 \end{minipage}\\
1357 T2M & $deg$ & 1
1358 &\begin{minipage}[t]{3in}
1359 {Temperature at 2 meters}
1360 \end{minipage}\\
1361 Q2M & $g/kg$ & 1
1362 &\begin{minipage}[t]{3in}
1363 {Specific Humidity at 2 meters}
1364 \end{minipage}\\
1365 U10M & $m/sec$ & 1
1366 &\begin{minipage}[t]{3in}
1367 {U-Wind at 10 meters}
1368 \end{minipage}\\
1369 V10M & $m/sec$ & 1
1370 &\begin{minipage}[t]{3in}
1371 {V-Wind at 10 meters}
1372 \end{minipage}\\
1373 T10M & $deg$ & 1
1374 &\begin{minipage}[t]{3in}
1375 {Temperature at 10 meters}
1376 \end{minipage}\\
1377 Q10M & $g/kg$ & 1
1378 &\begin{minipage}[t]{3in}
1379 {Specific Humidity at 10 meters}
1380 \end{minipage}\\
1381 DTRAIN & $kg/m^2$ & Nrphys
1382 &\begin{minipage}[t]{3in}
1383 {Detrainment Cloud Mass Flux}
1384 \end{minipage}\\
1385 QFILL & $g/kg/day$ & Nrphys
1386 &\begin{minipage}[t]{3in}
1387 {Filling of negative specific humidity}
1388 \end{minipage}\\
1389 \end{tabular}
1390 \vspace{1.5in}
1391 \vfill
1392
1393 \newpage
1394 \vspace*{\fill}
1395 \begin{tabular}{llll}
1396 \hline\hline
1397 NAME & UNITS & LEVELS & DESCRIPTION \\
1398 \hline
1399
1400 &\\
1401 DTCONV & $deg/sec$ & Nr
1402 &\begin{minipage}[t]{3in}
1403 {Temp Change due to Convection}
1404 \end{minipage}\\
1405 DQCONV & $g/kg/sec$ & Nr
1406 &\begin{minipage}[t]{3in}
1407 {Specific Humidity Change due to Convection}
1408 \end{minipage}\\
1409 RELHUM & $percent$ & Nr
1410 &\begin{minipage}[t]{3in}
1411 {Relative Humidity}
1412 \end{minipage}\\
1413 PRECLS & $g/m^2/sec$ & 1
1414 &\begin{minipage}[t]{3in}
1415 {Large Scale Precipitation}
1416 \end{minipage}\\
1417 ENPREC & $J/g$ & 1
1418 &\begin{minipage}[t]{3in}
1419 {Energy of Precipitation (snow, rain Temp)}
1420 \end{minipage}\\
1421 \end{tabular}
1422 \vspace{1.5in}
1423 \vfill
1424
1425 \newpage
1426
1427 \subsubsection{Fizhi Diagnostic Description}
1428
1429 In this section we list and describe the diagnostic quantities available within the
1430 GCM. The diagnostics are listed in the order that they appear in the
1431 Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1432 In all cases, each diagnostic as currently archived on the output datasets
1433 is time-averaged over its diagnostic output frequency:
1434
1435 \[
1436 {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1437 \]
1438 where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1439 output frequency of the diagnostic, and $\Delta t$ is
1440 the timestep over which the diagnostic is updated.
1441
1442 { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1443
1444 The zonal wind stress is the turbulent flux of zonal momentum from
1445 the surface.
1446 \[
1447 {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1448 \]
1449 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1450 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1451 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1452 the zonal wind in the lowest model layer.
1453 \\
1454
1455
1456 { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1457
1458 The meridional wind stress is the turbulent flux of meridional momentum from
1459 the surface.
1460 \[
1461 {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1462 \]
1463 where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1464 drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1465 (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1466 the meridional wind in the lowest model layer.
1467 \\
1468
1469 { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1470
1471 The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1472 gradient of virtual potential temperature and the eddy exchange coefficient:
1473 \[
1474 {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1475 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1476 \]
1477 where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1478 heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1479 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1480 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1481 for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1482 at the surface and at the bottom model level.
1483 \\
1484
1485
1486 { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1487
1488 The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1489 gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1490 \[
1491 {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1492 \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1493 \]
1494 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1495 the potential evapotranspiration actually evaporated, L is the latent
1496 heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1497 magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1498 for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1499 for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1500 humidity at the surface and at the bottom model level, respectively.
1501 \\
1502
1503 { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1504
1505 Over sea ice there is an additional source of energy at the surface due to the heat
1506 conduction from the relatively warm ocean through the sea ice. The heat conduction
1507 through sea ice represents an additional energy source term for the ground temperature equation.
1508
1509 \[
1510 {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1511 \]
1512
1513 where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1514 be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1515 $T_g$ is the temperature of the sea ice.
1516
1517 NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1518 \\
1519
1520
1521 { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1522
1523 \begin{eqnarray*}
1524 {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1525 & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1526 \end{eqnarray*}
1527 \\
1528 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1529 $F_{LW}^\uparrow$ is
1530 the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1531 \\
1532
1533 { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1534
1535 \begin{eqnarray*}
1536 {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1537 & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1538 \end{eqnarray*}
1539 \\
1540 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1541 $F_{SW}^\downarrow$ is
1542 the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1543 \\
1544
1545
1546 \noindent
1547 { \underline {RI} Richardson Number} ($dimensionless$)
1548
1549 \noindent
1550 The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1551 \[
1552 {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1553 = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1554 \]
1555 \\
1556 where we used the hydrostatic equation:
1557 \[
1558 {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1559 \]
1560 Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1561 indicate dominantly unstable shear, and large positive values indicate dominantly stable
1562 stratification.
1563 \\
1564
1565 \noindent
1566 { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1567
1568 \noindent
1569 The surface exchange coefficient is obtained from the similarity functions for the stability
1570 dependant flux profile relationships:
1571 \[
1572 {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1573 -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1574 { k \over { (\psi_{h} + \psi_{g}) } }
1575 \]
1576 where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1577 viscous sublayer non-dimensional temperature or moisture change:
1578 \[
1579 \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1580 \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1581 (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1582 \]
1583 and:
1584 $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1585
1586 \noindent
1587 $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1588 the temperature and moisture gradients, specified differently for stable and unstable
1589 layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1590 non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1591 viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1592 (see diagnostic number 67), and the subscript ref refers to a reference value.
1593 \\
1594
1595 \noindent
1596 { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1597
1598 \noindent
1599 The surface exchange coefficient is obtained from the similarity functions for the stability
1600 dependant flux profile relationships:
1601 \[
1602 {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1603 \]
1604 where $\psi_m$ is the surface layer non-dimensional wind shear:
1605 \[
1606 \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1607 \]
1608 \noindent
1609 $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1610 the temperature and moisture gradients, specified differently for stable and unstable layers
1611 according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1612 non-dimensional stability parameter, $u_*$ is the surface stress velocity
1613 (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1614 \\
1615
1616 \noindent
1617 { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1618
1619 \noindent
1620 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1621 moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1622 diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1623 or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1624 takes the form:
1625 \[
1626 {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1627 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1628 \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1629 \]
1630 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1631 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1632 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1633 depth,
1634 $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1635 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1636 dimensionless buoyancy and wind shear
1637 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1638 are functions of the Richardson number.
1639
1640 \noindent
1641 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1642 see Helfand and Labraga, 1988.
1643
1644 \noindent
1645 In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1646 in units of $m/sec$, given by:
1647 \[
1648 {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1649 \]
1650 \noindent
1651 where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1652 surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1653 friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1654 and $W_s$ is the magnitude of the surface layer wind.
1655 \\
1656
1657 \noindent
1658 { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1659
1660 \noindent
1661 In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1662 momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1663 diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1664 In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1665 takes the form:
1666 \[
1667 {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1668 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1669 \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1670 \]
1671 \noindent
1672 where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1673 energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1674 which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1675 depth,
1676 $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1677 wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1678 dimensionless buoyancy and wind shear
1679 parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1680 are functions of the Richardson number.
1681
1682 \noindent
1683 For the detailed equations and derivations of the modified level 2.5 closure scheme,
1684 see Helfand and Labraga, 1988.
1685
1686 \noindent
1687 In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1688 in units of $m/sec$, given by:
1689 \[
1690 {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1691 \]
1692 \noindent
1693 where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1694 similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1695 (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1696 magnitude of the surface layer wind.
1697 \\
1698
1699 \noindent
1700 { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1701
1702 \noindent
1703 The tendency of U-Momentum due to turbulence is written:
1704 \[
1705 {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1706 = {\pp{}{z} }{(K_m \pp{u}{z})}
1707 \]
1708
1709 \noindent
1710 The Helfand and Labraga level 2.5 scheme models the turbulent
1711 flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1712 equation.
1713
1714 \noindent
1715 { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1716
1717 \noindent
1718 The tendency of V-Momentum due to turbulence is written:
1719 \[
1720 {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1721 = {\pp{}{z} }{(K_m \pp{v}{z})}
1722 \]
1723
1724 \noindent
1725 The Helfand and Labraga level 2.5 scheme models the turbulent
1726 flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1727 equation.
1728 \\
1729
1730 \noindent
1731 { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1732
1733 \noindent
1734 The tendency of temperature due to turbulence is written:
1735 \[
1736 {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1737 P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1738 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1739 \]
1740
1741 \noindent
1742 The Helfand and Labraga level 2.5 scheme models the turbulent
1743 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1744 equation.
1745 \\
1746
1747 \noindent
1748 { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1749
1750 \noindent
1751 The tendency of specific humidity due to turbulence is written:
1752 \[
1753 {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1754 = {\pp{}{z} }{(K_h \pp{q}{z})}
1755 \]
1756
1757 \noindent
1758 The Helfand and Labraga level 2.5 scheme models the turbulent
1759 flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1760 equation.
1761 \\
1762
1763 \noindent
1764 { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1765
1766 \noindent
1767 \[
1768 {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1769 \]
1770 where:
1771 \[
1772 \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1773 \hspace{.4cm} and
1774 \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1775 \]
1776 and
1777 \[
1778 \Gamma_s = g \eta \pp{s}{p}
1779 \]
1780
1781 \noindent
1782 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1783 precipitation processes, or supersaturation rain.
1784 The summation refers to contributions from each cloud type called by RAS.
1785 The dry static energy is given
1786 as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1787 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1788 the description of the convective parameterization. The fractional adjustment, or relaxation
1789 parameter, for each cloud type is given as $\alpha$, while
1790 $R$ is the rain re-evaporation adjustment.
1791 \\
1792
1793 \noindent
1794 { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1795
1796 \noindent
1797 \[
1798 {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1799 \]
1800 where:
1801 \[
1802 \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1803 \hspace{.4cm} and
1804 \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1805 \]
1806 and
1807 \[
1808 \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1809 \]
1810 \noindent
1811 The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1812 precipitation processes, or supersaturation rain.
1813 The summation refers to contributions from each cloud type called by RAS.
1814 The dry static energy is given as $s$,
1815 the moist static energy is given as $h$,
1816 the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1817 given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1818 the description of the convective parameterization. The fractional adjustment, or relaxation
1819 parameter, for each cloud type is given as $\alpha$, while
1820 $R$ is the rain re-evaporation adjustment.
1821 \\
1822
1823 \noindent
1824 { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1825
1826 \noindent
1827 The net longwave heating rate is calculated as the vertical divergence of the
1828 net terrestrial radiative fluxes.
1829 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1830 longwave routine.
1831 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1832 For a given cloud fraction,
1833 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1834 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1835 for the upward and downward radiative fluxes.
1836 (see Section \ref{sec:fizhi:radcloud}).
1837 The cloudy-sky flux is then obtained as:
1838
1839 \noindent
1840 \[
1841 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1842 \]
1843
1844 \noindent
1845 Finally, the net longwave heating rate is calculated as the vertical divergence of the
1846 net terrestrial radiative fluxes:
1847 \[
1848 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1849 \]
1850 or
1851 \[
1852 {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1853 \]
1854
1855 \noindent
1856 where $g$ is the accelation due to gravity,
1857 $c_p$ is the heat capacity of air at constant pressure,
1858 and
1859 \[
1860 F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1861 \]
1862 \\
1863
1864
1865 \noindent
1866 { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1867
1868 \noindent
1869 The net Shortwave heating rate is calculated as the vertical divergence of the
1870 net solar radiative fluxes.
1871 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1872 For the clear-sky case, the shortwave fluxes and heating rates are computed with
1873 both CLMO (maximum overlap cloud fraction) and
1874 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1875 The shortwave routine is then called a second time, for the cloudy-sky case, with the
1876 true time-averaged cloud fractions CLMO
1877 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1878 input at the top of the atmosphere.
1879
1880 \noindent
1881 The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1882 \[
1883 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1884 \]
1885 or
1886 \[
1887 {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1888 \]
1889
1890 \noindent
1891 where $g$ is the accelation due to gravity,
1892 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1893 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1894 \[
1895 F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1896 \]
1897 \\
1898
1899 \noindent
1900 { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1901
1902 \noindent
1903 For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1904 the vertical integral or total precipitable amount is given by:
1905 \[
1906 {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1907 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1908 \]
1909 \\
1910
1911 \noindent
1912 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1913 time step, scaled to $mm/day$.
1914 \\
1915
1916 \noindent
1917 { \underline {PRECON} Convective Precipition ($mm/day$) }
1918
1919 \noindent
1920 For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1921 the vertical integral or total precipitable amount is given by:
1922 \[
1923 {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1924 {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1925 \]
1926 \\
1927
1928 \noindent
1929 A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1930 time step, scaled to $mm/day$.
1931 \\
1932
1933 \noindent
1934 { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1935
1936 \noindent
1937 The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1938 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1939
1940 \[
1941 {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1942 {\rho } {(- K_m \pp{U}{z})}
1943 \]
1944
1945 \noindent
1946 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1947 \\
1948
1949 \noindent
1950 { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1951
1952 \noindent
1953 The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1954 \hspace{.2cm} only$ from the eddy coefficient for momentum:
1955
1956 \[
1957 {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1958 {\rho } {(- K_m \pp{V}{z})}
1959 \]
1960
1961 \noindent
1962 where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1963 \\
1964
1965
1966 \noindent
1967 { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1968
1969 \noindent
1970 The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1971 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1972
1973 \noindent
1974 \[
1975 {\bf TTFLUX} = c_p {\rho }
1976 P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1977 = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1978 \]
1979
1980 \noindent
1981 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1982 \\
1983
1984
1985 \noindent
1986 { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1987
1988 \noindent
1989 The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1990 \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1991
1992 \noindent
1993 \[
1994 {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1995 {L {\rho }(- K_h \pp{q}{z})}
1996 \]
1997
1998 \noindent
1999 where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2000 \\
2001
2002
2003 \noindent
2004 { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
2005
2006 \noindent
2007 The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2008 \[
2009 {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2010 \]
2011
2012 \noindent
2013 where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2014 $z_0$ is the surface roughness.
2015
2016 \noindent
2017 NOTE: CN is not available through model version 5.3, but is available in subsequent
2018 versions.
2019 \\
2020
2021 \noindent
2022 { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
2023
2024 \noindent
2025 The surface wind speed is calculated for the last internal turbulence time step:
2026 \[
2027 {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2028 \]
2029
2030 \noindent
2031 where the subscript $Nrphys$ refers to the lowest model level.
2032 \\
2033
2034 \noindent
2035 { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2036
2037 \noindent
2038 The air/surface virtual temperature difference measures the stability of the surface layer:
2039 \[
2040 {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2041 \]
2042 \noindent
2043 where
2044 \[
2045 \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2046 and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2047 \]
2048
2049 \noindent
2050 $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2051 $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2052 and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2053 refers to the surface.
2054 \\
2055
2056
2057 \noindent
2058 { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2059
2060 \noindent
2061 The ground temperature equation is solved as part of the turbulence package
2062 using a backward implicit time differencing scheme:
2063 \[
2064 {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2065 C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2066 \]
2067
2068 \noindent
2069 where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2070 net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2071 sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2072 flux, and $C_g$ is the total heat capacity of the ground.
2073 $C_g$ is obtained by solving a heat diffusion equation
2074 for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2075 \[
2076 C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2077 { 86400. \over {2 \pi} } } \, \, .
2078 \]
2079 \noindent
2080 Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2081 {cm \over {^oK}}$,
2082 the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2083 by $2 \pi$ $radians/
2084 day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2085 is a function of the ground wetness, $W$.
2086 \\
2087
2088 \noindent
2089 { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2090
2091 \noindent
2092 The surface temperature estimate is made by assuming that the model's lowest
2093 layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2094 The surface temperature is therefore:
2095 \[
2096 {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2097 \]
2098 \\
2099
2100 \noindent
2101 { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2102
2103 \noindent
2104 The change in surface temperature from one turbulence time step to the next, solved
2105 using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2106 \[
2107 {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2108 \]
2109
2110 \noindent
2111 where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2112 refers to the value at the previous turbulence time level.
2113 \\
2114
2115 \noindent
2116 { \underline {QG} Ground Specific Humidity ($g/kg$) }
2117
2118 \noindent
2119 The ground specific humidity is obtained by interpolating between the specific
2120 humidity at the lowest model level and the specific humidity of a saturated ground.
2121 The interpolation is performed using the potential evapotranspiration function:
2122 \[
2123 {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2124 \]
2125
2126 \noindent
2127 where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2128 and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2129 pressure.
2130 \\
2131
2132 \noindent
2133 { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2134
2135 \noindent
2136 The surface saturation specific humidity is the saturation specific humidity at
2137 the ground temprature and surface pressure:
2138 \[
2139 {\bf QS} = q^*(T_g,P_s)
2140 \]
2141 \\
2142
2143 \noindent
2144 { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2145 radiation subroutine (deg)}
2146 \[
2147 {\bf TGRLW} = T_g(\lambda , \phi ,n)
2148 \]
2149 \noindent
2150 where $T_g$ is the model ground temperature at the current time step $n$.
2151 \\
2152
2153
2154 \noindent
2155 { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2156 \[
2157 {\bf ST4} = \sigma T^4
2158 \]
2159 \noindent
2160 where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2161 \\
2162
2163 \noindent
2164 { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2165 \[
2166 {\bf OLR} = F_{LW,top}^{NET}
2167 \]
2168 \noindent
2169 where top indicates the top of the first model layer.
2170 In the GCM, $p_{top}$ = 0.0 mb.
2171 \\
2172
2173
2174 \noindent
2175 { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2176 \[
2177 {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2178 \]
2179 \noindent
2180 where top indicates the top of the first model layer.
2181 In the GCM, $p_{top}$ = 0.0 mb.
2182 \\
2183
2184 \noindent
2185 { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2186
2187 \noindent
2188 \begin{eqnarray*}
2189 {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2190 & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2191 \end{eqnarray*}
2192 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2193 $F(clearsky)_{LW}^\uparrow$ is
2194 the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2195 \\
2196
2197 \noindent
2198 { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2199
2200 \noindent
2201 The net longwave heating rate is calculated as the vertical divergence of the
2202 net terrestrial radiative fluxes.
2203 Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2204 longwave routine.
2205 The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2206 For a given cloud fraction,
2207 the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2208 to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2209 for the upward and downward radiative fluxes.
2210 (see Section \ref{sec:fizhi:radcloud}).
2211 The cloudy-sky flux is then obtained as:
2212
2213 \noindent
2214 \[
2215 F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2216 \]
2217
2218 \noindent
2219 Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2220 vertical divergence of the
2221 clear-sky longwave radiative flux:
2222 \[
2223 \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2224 \]
2225 or
2226 \[
2227 {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2228 \]
2229
2230 \noindent
2231 where $g$ is the accelation due to gravity,
2232 $c_p$ is the heat capacity of air at constant pressure,
2233 and
2234 \[
2235 F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2236 \]
2237 \\
2238
2239
2240 \noindent
2241 { \underline {TLW} Instantaneous temperature used as input to the Longwave
2242 radiation subroutine (deg)}
2243 \[
2244 {\bf TLW} = T(\lambda , \phi ,level, n)
2245 \]
2246 \noindent
2247 where $T$ is the model temperature at the current time step $n$.
2248 \\
2249
2250
2251 \noindent
2252 { \underline {SHLW} Instantaneous specific humidity used as input to
2253 the Longwave radiation subroutine (kg/kg)}
2254 \[
2255 {\bf SHLW} = q(\lambda , \phi , level , n)
2256 \]
2257 \noindent
2258 where $q$ is the model specific humidity at the current time step $n$.
2259 \\
2260
2261
2262 \noindent
2263 { \underline {OZLW} Instantaneous ozone used as input to
2264 the Longwave radiation subroutine (kg/kg)}
2265 \[
2266 {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2267 \]
2268 \noindent
2269 where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2270 mean zonally averaged ozone data set.
2271 \\
2272
2273
2274 \noindent
2275 { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2276
2277 \noindent
2278 {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2279 Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2280 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2281 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2282 \[
2283 {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2284 \]
2285 \\
2286
2287
2288 { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2289
2290 {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2291 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2292 Radiation packages.
2293 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2294 \[
2295 {\bf CLDTOT} = F_{RAS} + F_{LS}
2296 \]
2297 \\
2298 where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2299 time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2300 \\
2301
2302
2303 \noindent
2304 { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2305
2306 \noindent
2307 {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2308 Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2309 convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2310 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2311 \[
2312 {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2313 \]
2314 \\
2315
2316 \noindent
2317 { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2318
2319 \noindent
2320 {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2321 Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2322 Radiation algorithm. These are
2323 convective and large-scale clouds whose radiative characteristics are not
2324 assumed to be correlated in the vertical.
2325 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2326 \[
2327 {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2328 \]
2329 \\
2330
2331 \noindent
2332 { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2333 \[
2334 {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2335 \]
2336 \noindent
2337 where $S_0$, is the extra-terrestial solar contant,
2338 $R_a$ is the earth-sun distance in Astronomical Units,
2339 and $cos \phi_z$ is the cosine of the zenith angle.
2340 It should be noted that {\bf RADSWT}, as well as
2341 {\bf OSR} and {\bf OSRCLR},
2342 are calculated at the top of the atmosphere (p=0 mb). However, the
2343 {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2344 calculated at $p= p_{top}$ (0.0 mb for the GCM).
2345 \\
2346
2347 \noindent
2348 { \underline {EVAP} Surface Evaporation ($mm/day$) }
2349
2350 \noindent
2351 The surface evaporation is a function of the gradient of moisture, the potential
2352 evapotranspiration fraction and the eddy exchange coefficient:
2353 \[
2354 {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2355 \]
2356 where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2357 the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2358 turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2359 $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2360 number 34) and at the bottom model level, respectively.
2361 \\
2362
2363 \noindent
2364 { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2365
2366 \noindent
2367 {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2368 and Analysis forcing.
2369 \[
2370 {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2371 \]
2372 \\
2373
2374 \noindent
2375 { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2376
2377 \noindent
2378 {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2379 and Analysis forcing.
2380 \[
2381 {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2382 \]
2383 \\
2384
2385 \noindent
2386 { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2387
2388 \noindent
2389 {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2390 and Analysis forcing.
2391 \begin{eqnarray*}
2392 {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2393 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2394 \end{eqnarray*}
2395 \\
2396
2397 \noindent
2398 { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2399
2400 \noindent
2401 {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2402 and Analysis forcing.
2403 \[
2404 {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2405 + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2406 \]
2407 \\
2408
2409 \noindent
2410 { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2411
2412 \noindent
2413 The surface stress velocity, or the friction velocity, is the wind speed at
2414 the surface layer top impeded by the surface drag:
2415 \[
2416 {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2417 C_u = {k \over {\psi_m} }
2418 \]
2419
2420 \noindent
2421 $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2422 number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2423
2424 \noindent
2425 { \underline {Z0} Surface Roughness Length ($m$) }
2426
2427 \noindent
2428 Over the land surface, the surface roughness length is interpolated to the local
2429 time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2430 the roughness length is a function of the surface-stress velocity, $u_*$.
2431 \[
2432 {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2433 \]
2434
2435 \noindent
2436 where the constants are chosen to interpolate between the reciprocal relation of
2437 Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2438 for moderate to large winds.
2439 \\
2440
2441 \noindent
2442 { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2443
2444 \noindent
2445 The fraction of time when turbulence is present is defined as the fraction of
2446 time when the turbulent kinetic energy exceeds some minimum value, defined here
2447 to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2448 incremented. The fraction over the averaging interval is reported.
2449 \\
2450
2451 \noindent
2452 { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2453
2454 \noindent
2455 The depth of the PBL is defined by the turbulence parameterization to be the
2456 depth at which the turbulent kinetic energy reduces to ten percent of its surface
2457 value.
2458
2459 \[
2460 {\bf PBL} = P_{PBL} - P_{surface}
2461 \]
2462
2463 \noindent
2464 where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2465 reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2466 \\
2467
2468 \noindent
2469 { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2470
2471 \noindent
2472 The net Shortwave heating rate is calculated as the vertical divergence of the
2473 net solar radiative fluxes.
2474 The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2475 For the clear-sky case, the shortwave fluxes and heating rates are computed with
2476 both CLMO (maximum overlap cloud fraction) and
2477 CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2478 The shortwave routine is then called a second time, for the cloudy-sky case, with the
2479 true time-averaged cloud fractions CLMO
2480 and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2481 input at the top of the atmosphere.
2482
2483 \noindent
2484 The heating rate due to Shortwave Radiation under clear skies is defined as:
2485 \[
2486 \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2487 \]
2488 or
2489 \[
2490 {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2491 \]
2492
2493 \noindent
2494 where $g$ is the accelation due to gravity,
2495 $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2496 shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2497 \[
2498 F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2499 \]
2500 \\
2501
2502 \noindent
2503 { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2504 \[
2505 {\bf OSR} = F_{SW,top}^{NET}
2506 \]
2507 \noindent
2508 where top indicates the top of the first model layer used in the shortwave radiation
2509 routine.
2510 In the GCM, $p_{SW_{top}}$ = 0 mb.
2511 \\
2512
2513 \noindent
2514 { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2515 \[
2516 {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2517 \]
2518 \noindent
2519 where top indicates the top of the first model layer used in the shortwave radiation
2520 routine.
2521 In the GCM, $p_{SW_{top}}$ = 0 mb.
2522 \\
2523
2524
2525 \noindent
2526 { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2527
2528 \noindent
2529 The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2530 \[
2531 {\bf CLDMAS} = \eta m_B
2532 \]
2533 where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2534 the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2535 description of the convective parameterization.
2536 \\
2537
2538
2539
2540 \noindent
2541 { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2542
2543 \noindent
2544 The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2545 the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2546 Zonal U-Wind which is archived on the Prognostic Output data stream.
2547 \[
2548 {\bf UAVE} = u(\lambda, \phi, level , t)
2549 \]
2550 \\
2551 Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2552 \\
2553
2554 \noindent
2555 { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2556
2557 \noindent
2558 The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2559 the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2560 Meridional V-Wind which is archived on the Prognostic Output data stream.
2561 \[
2562 {\bf VAVE} = v(\lambda, \phi, level , t)
2563 \]
2564 \\
2565 Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2566 \\
2567
2568 \noindent
2569 { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2570
2571 \noindent
2572 The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2573 the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2574 Temperature which is archived on the Prognostic Output data stream.
2575 \[
2576 {\bf TAVE} = T(\lambda, \phi, level , t)
2577 \]
2578 \\
2579
2580 \noindent
2581 { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2582
2583 \noindent
2584 The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2585 the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2586 Specific Humidity which is archived on the Prognostic Output data stream.
2587 \[
2588 {\bf QAVE} = q(\lambda, \phi, level , t)
2589 \]
2590 \\
2591
2592 \noindent
2593 { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2594
2595 \noindent
2596 The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2597 the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2598 Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2599 \begin{eqnarray*}
2600 {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2601 & = & p_s(\lambda, \phi, level , t) - p_T
2602 \end{eqnarray*}
2603 \\
2604
2605
2606 \noindent
2607 { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2608
2609 \noindent
2610 The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2611 produced by the GCM Turbulence parameterization over
2612 the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2613 Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2614 \[
2615 {\bf QQAVE} = qq(\lambda, \phi, level , t)
2616 \]
2617 \\
2618 Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2619 \\
2620
2621 \noindent
2622 { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2623
2624 \noindent
2625 \begin{eqnarray*}
2626 {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2627 & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2628 \end{eqnarray*}
2629 \noindent
2630 \\
2631 where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2632 $F(clearsky){SW}^\downarrow$ is
2633 the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2634 the upward clearsky Shortwave flux.
2635 \\
2636
2637 \noindent
2638 { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2639
2640 \noindent
2641 {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2642 and the Analysis forcing.
2643 \[
2644 {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2645 \]
2646 \\
2647
2648 \noindent
2649 { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2650
2651 \noindent
2652 {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2653 and the Analysis forcing.
2654 \[
2655 {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2656 \]
2657 \\
2658
2659 \noindent
2660 { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2661
2662 \noindent
2663 {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2664 and the Analysis forcing.
2665 \begin{eqnarray*}
2666 {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2667 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2668 \end{eqnarray*}
2669 \\
2670 If we define the time-tendency of Temperature due to Diabatic processes as
2671 \begin{eqnarray*}
2672 \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2673 & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2674 \end{eqnarray*}
2675 then, since there are no surface pressure changes due to Diabatic processes, we may write
2676 \[
2677 \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2678 \]
2679 where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2680 \[
2681 {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2682 \]
2683 \\
2684
2685 \noindent
2686 { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2687
2688 \noindent
2689 {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2690 and the Analysis forcing.
2691 \[
2692 {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2693 \]
2694 If we define the time-tendency of Specific Humidity due to Diabatic processes as
2695 \[
2696 \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2697 \]
2698 then, since there are no surface pressure changes due to Diabatic processes, we may write
2699 \[
2700 \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2701 \]
2702 Thus, {\bf DIABQ} may be written as
2703 \[
2704 {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2705 \]
2706 \\
2707
2708 \noindent
2709 { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2710
2711 \noindent
2712 The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2713 $u q$ over the depth of the atmosphere at each model timestep,
2714 and dividing by the total mass of the column.
2715 \[
2716 {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2717 \]
2718 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2719 \[
2720 {\bf VINTUQ} = { \int_0^1 u q dp }
2721 \]
2722 \\
2723
2724
2725 \noindent
2726 { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2727
2728 \noindent
2729 The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2730 $v q$ over the depth of the atmosphere at each model timestep,
2731 and dividing by the total mass of the column.
2732 \[
2733 {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2734 \]
2735 Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2736 \[
2737 {\bf VINTVQ} = { \int_0^1 v q dp }
2738 \]
2739 \\
2740
2741
2742 \noindent
2743 { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2744
2745 \noindent
2746 The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2747 $u T$ over the depth of the atmosphere at each model timestep,
2748 and dividing by the total mass of the column.
2749 \[
2750 {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2751 \]
2752 Or,
2753 \[
2754 {\bf VINTUT} = { \int_0^1 u T dp }
2755 \]
2756 \\
2757
2758 \noindent
2759 { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2760
2761 \noindent
2762 The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2763 $v T$ over the depth of the atmosphere at each model timestep,
2764 and dividing by the total mass of the column.
2765 \[
2766 {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2767 \]
2768 Using $\rho \delta z = -{\delta p \over g} $, we have
2769 \[
2770 {\bf VINTVT} = { \int_0^1 v T dp }
2771 \]
2772 \\
2773
2774 \noindent
2775 { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2776
2777 If we define the
2778 time-averaged random and maximum overlapped cloudiness as CLRO and
2779 CLMO respectively, then the probability of clear sky associated
2780 with random overlapped clouds at any level is (1-CLRO) while the probability of
2781 clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2782 The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2783 the total cloud fraction at each level may be obtained by
2784 1-(1-CLRO)*(1-CLMO).
2785
2786 At any given level, we may define the clear line-of-site probability by
2787 appropriately accounting for the maximum and random overlap
2788 cloudiness. The clear line-of-site probability is defined to be
2789 equal to the product of the clear line-of-site probabilities
2790 associated with random and maximum overlap cloudiness. The clear
2791 line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2792 from the current pressure $p$
2793 to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2794 is simply 1.0 minus the largest maximum overlap cloud value along the
2795 line-of-site, ie.
2796
2797 $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2798
2799 Thus, even in the time-averaged sense it is assumed that the
2800 maximum overlap clouds are correlated in the vertical. The clear
2801 line-of-site probability associated with random overlap clouds is
2802 defined to be the product of the clear sky probabilities at each
2803 level along the line-of-site, ie.
2804
2805 $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2806
2807 The total cloud fraction at a given level associated with a line-
2808 of-site calculation is given by
2809
2810 $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2811 \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2812
2813
2814 \noindent
2815 The 2-dimensional net cloud fraction as seen from the top of the
2816 atmosphere is given by
2817 \[
2818 {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2819 \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2820 \]
2821 \\
2822 For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2823
2824
2825 \noindent
2826 { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2827
2828 \noindent
2829 The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2830 given by:
2831 \begin{eqnarray*}
2832 {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2833 & = & {\pi \over g} \int_0^1 q dp
2834 \end{eqnarray*}
2835 where we have used the hydrostatic relation
2836 $\rho \delta z = -{\delta p \over g} $.
2837 \\
2838
2839
2840 \noindent
2841 { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2842
2843 \noindent
2844 The u-wind at the 2-meter depth is determined from the similarity theory:
2845 \[
2846 {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2847 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2848 \]
2849
2850 \noindent
2851 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2852 $sl$ refers to the height of the top of the surface layer. If the roughness height
2853 is above two meters, ${\bf U2M}$ is undefined.
2854 \\
2855
2856 \noindent
2857 { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2858
2859 \noindent
2860 The v-wind at the 2-meter depth is a determined from the similarity theory:
2861 \[
2862 {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2863 { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2864 \]
2865
2866 \noindent
2867 where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2868 $sl$ refers to the height of the top of the surface layer. If the roughness height
2869 is above two meters, ${\bf V2M}$ is undefined.
2870 \\
2871
2872 \noindent
2873 { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2874
2875 \noindent
2876 The temperature at the 2-meter depth is a determined from the similarity theory:
2877 \[
2878 {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2879 P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2880 (\theta_{sl} - \theta_{surf}))
2881 \]
2882 where:
2883 \[
2884 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2885 \]
2886
2887 \noindent
2888 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2889 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2890 $sl$ refers to the height of the top of the surface layer. If the roughness height
2891 is above two meters, ${\bf T2M}$ is undefined.
2892 \\
2893
2894 \noindent
2895 { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2896
2897 \noindent
2898 The specific humidity at the 2-meter depth is determined from the similarity theory:
2899 \[
2900 {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2901 P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2902 (q_{sl} - q_{surf}))
2903 \]
2904 where:
2905 \[
2906 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2907 \]
2908
2909 \noindent
2910 where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2911 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2912 $sl$ refers to the height of the top of the surface layer. If the roughness height
2913 is above two meters, ${\bf Q2M}$ is undefined.
2914 \\
2915
2916 \noindent
2917 { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2918
2919 \noindent
2920 The u-wind at the 10-meter depth is an interpolation between the surface wind
2921 and the model lowest level wind using the ratio of the non-dimensional wind shear
2922 at the two levels:
2923 \[
2924 {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2925 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2926 \]
2927
2928 \noindent
2929 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2930 $sl$ refers to the height of the top of the surface layer.
2931 \\
2932
2933 \noindent
2934 { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2935
2936 \noindent
2937 The v-wind at the 10-meter depth is an interpolation between the surface wind
2938 and the model lowest level wind using the ratio of the non-dimensional wind shear
2939 at the two levels:
2940 \[
2941 {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2942 { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2943 \]
2944
2945 \noindent
2946 where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2947 $sl$ refers to the height of the top of the surface layer.
2948 \\
2949
2950 \noindent
2951 { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2952
2953 \noindent
2954 The temperature at the 10-meter depth is an interpolation between the surface potential
2955 temperature and the model lowest level potential temperature using the ratio of the
2956 non-dimensional temperature gradient at the two levels:
2957 \[
2958 {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2959 P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2960 (\theta_{sl} - \theta_{surf}))
2961 \]
2962 where:
2963 \[
2964 \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2965 \]
2966
2967 \noindent
2968 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2969 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2970 $sl$ refers to the height of the top of the surface layer.
2971 \\
2972
2973 \noindent
2974 { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2975
2976 \noindent
2977 The specific humidity at the 10-meter depth is an interpolation between the surface specific
2978 humidity and the model lowest level specific humidity using the ratio of the
2979 non-dimensional temperature gradient at the two levels:
2980 \[
2981 {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2982 P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2983 (q_{sl} - q_{surf}))
2984 \]
2985 where:
2986 \[
2987 q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2988 \]
2989
2990 \noindent
2991 where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2992 the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2993 $sl$ refers to the height of the top of the surface layer.
2994 \\
2995
2996 \noindent
2997 { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2998
2999 The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3000 \[
3001 {\bf DTRAIN} = \eta_{r_D}m_B
3002 \]
3003 \noindent
3004 where $r_D$ is the detrainment level,
3005 $m_B$ is the cloud base mass flux, and $\eta$
3006 is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3007 \\
3008
3009 \noindent
3010 { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
3011
3012 \noindent
3013 Due to computational errors associated with the numerical scheme used for
3014 the advection of moisture, negative values of specific humidity may be generated. The
3015 specific humidity is checked for negative values after every dynamics timestep. If negative
3016 values have been produced, a filling algorithm is invoked which redistributes moisture from
3017 below. Diagnostic {\bf QFILL} is equal to the net filling needed
3018 to eliminate negative specific humidity, scaled to a per-day rate:
3019 \[
3020 {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3021 \]
3022 where
3023 \[
3024 q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3025 \]
3026
3027
3028 \subsection{Key subroutines, parameters and files}
3029
3030 \subsection{Dos and donts}
3031
3032 \subsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22