/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Thu Jul 14 19:18:02 2005 UTC (20 years ago) by molod
Branch: MAIN
Changes since 1.7: +2133 -0 lines
File MIME type: application/x-tex
Add fizhi diag description to fizhi.tex, add gridalt.tex to part6, start fixing diag

1 molod 1.1 \section{Fizhi: High-end Atmospheric Physics}
2 edhill 1.7 \label{sec:pkg:fizhi}
3     \begin{rawhtml}
4     <!-- CMIREDIR:package_fizhi: -->
5     \end{rawhtml}
6 molod 1.3 \input{texinputs/epsf.tex}
7 molod 1.1
8     \subsection{Introduction}
9     The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art
10     physical parameterizations for atmospheric radiation, cumulus convection, atmospheric
11     boundary layer turbulence, and land surface processes.
12    
13     % *************************************************************************
14     % *************************************************************************
15    
16     \subsection{Equations}
17    
18     \subsubsection{Moist Convective Processes}
19    
20 molod 1.5 \paragraph{Sub-grid and Large-scale Convection}
21 molod 1.1 \label{sec:fizhi:mc}
22    
23     Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa
24     Schubert (RAS) scheme of Moorthi and Suarez (1992), which is a linearized Arakawa Schubert
25     type scheme. RAS predicts the mass flux from an ensemble of clouds. Each subensemble is identified
26     by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale properties.
27    
28     The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are
29     the dry static energy, $s=c_pT +gz$, and the moist static energy, $h=c_p T + gz + Lq$.
30     The conceptual model behind RAS depicts each subensemble as a rising plume cloud, entraining
31     mass from the environment during ascent, and detraining all cloud air at the level of neutral
32     buoyancy. RAS assumes that the normalized cloud mass flux, $\eta$, normalized by the cloud base
33     mass flux, is a linear function of height, expressed as:
34     \[
35     \pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
36     -{c_p \over {g}}\theta\lambda
37     \]
38     where we have used the hydrostatic equation written in the form:
39     \[
40     \pp{z}{P^{\kappa}} = -{c_p \over {g}}\theta
41     \]
42    
43     The entrainment parameter, $\lambda$, characterizes a particular subensemble based on its
44     detrainment level, and is obtained by assuming that the level of detrainment is the level of neutral
45     buoyancy, ie., the level at which the moist static energy of the cloud, $h_c$, is equal
46     to the saturation moist static energy of the environment, $h^*$. Following Moorthi and Suarez (1992),
47     $\lambda$ may be written as
48     \[
49     \lambda = { {h_B - h^*_D} \over { {c_p \over g} {\int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}}} } ,
50     \]
51    
52     where the subscript $B$ refers to cloud base, and the subscript $D$ refers to the detrainment level.
53    
54    
55     The convective instability is measured in terms of the cloud work function $A$, defined as the
56     rate of change of cumulus kinetic energy. The cloud work function is
57     related to the buoyancy, or the difference
58     between the moist static energy in the cloud and in the environment:
59     \[
60     A = \int_{P_D}^{P_B} { {\eta \over {1 + \gamma} }
61     \left[ {{h_c-h^*} \over {P^{\kappa}}} \right] dP^{\kappa}}
62     \]
63    
64     where $\gamma$ is ${L \over {c_p}}\pp{q^*}{T}$ obtained from the Claussius Clapeyron equation,
65     and the subscript $c$ refers to the value inside the cloud.
66    
67    
68     To determine the cloud base mass flux, the rate of change of $A$ in time {\em due to dissipation by
69     the clouds} is assumed to approximately balance the rate of change of $A$ {\em due to the generation
70     by the large scale}. This is the quasi-equilibrium assumption, and results in an expression for $m_B$:
71     \[
72     m_B = {{- \left.{dA \over dt} \right|_{ls}} \over K}
73     \]
74    
75     where $K$ is the cloud kernel, defined as the rate of change of the cloud work function per
76     unit cloud base mass flux, and is currently obtained by analytically differentiating the
77     expression for $A$ in time.
78     The rate of change of $A$ due to the generation by the large scale can be written as the
79     difference between the current $A(t+\Delta t)$ and its equillibrated value after the previous
80     convective time step
81     $A(t)$, divided by the time step. $A(t)$ is approximated as some critical $A_{crit}$,
82     computed by Lord (1982) from $in situ$ observations.
83    
84    
85     The predicted convective mass fluxes are used to solve grid-scale temperature
86     and moisture budget equations to determine the impact of convection on the large scale fields of
87     temperature (through latent heating and compensating subsidence) and moisture (through
88     precipitation and detrainment):
89     \[
90     \left.{\pp{\theta}{t}}\right|_{c} = \alpha { m_B \over {c_p P^{\kappa}}} \eta \pp{s}{p}
91     \]
92     and
93     \[
94     \left.{\pp{q}{t}}\right|_{c} = \alpha { m_B \over {L}} \eta (\pp{h}{p}-\pp{s}{p})
95     \]
96     where $\theta = {T \over P^{\kappa}}$, $P = (p/p_0)$, and $\alpha$ is the relaxation parameter.
97    
98     As an approximation to a full interaction between the different allowable subensembles,
99     many clouds are simulated frequently, each modifying the large scale environment some fraction
100     $\alpha$ of the total adjustment. The parameterization thereby ``relaxes'' the large scale environment
101     towards equillibrium.
102    
103     In addition to the RAS cumulus convection scheme, the fizhi package employs a
104     Kessler-type scheme for the re-evaporation of falling rain (Sud and Molod, 1988), which
105     correspondingly adjusts the temperature assuming $h$ is conserved. RAS in its current
106     formulation assumes that all cloud water is deposited into the detrainment level as rain.
107     All of the rain is available for re-evaporation, which begins in the level below detrainment.
108     The scheme accounts for some microphysics such as
109     the rainfall intensity, the drop size distribution, as well as the temperature,
110     pressure and relative humidity of the surrounding air. The fraction of the moisture deficit
111     in any model layer into which the rain may re-evaporate is controlled by a free parameter,
112     which allows for a relatively efficient re-evaporation of liquid precipitate and larger rainout
113     for frozen precipitation.
114    
115     Due to the increased vertical resolution near the surface, the lowest model
116     layers are averaged to provide a 50 mb thick sub-cloud layer for RAS. Each time RAS is
117     invoked (every ten simulated minutes),
118     a number of randomly chosen subensembles are checked for the possibility
119     of convection, from just above cloud base to 10 mb.
120    
121     Supersaturation or large-scale precipitation is initiated in the fizhi package whenever
122     the relative humidity in any grid-box exceeds a critical value, currently 100 \%.
123     The large-scale precipitation re-evaporates during descent to partially saturate
124     lower layers in a process identical to the re-evaporation of convective rain.
125    
126    
127 molod 1.5 \paragraph{Cloud Formation}
128 molod 1.1 \label{sec:fizhi:clouds}
129    
130     Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined
131     diagnostically as part of the cumulus and large-scale parameterizations.
132     Convective cloud fractions produced by RAS are proportional to the
133     detrained liquid water amount given by
134    
135     \[
136     F_{RAS} = \min\left[ {l_{RAS}\over l_c}, 1.0 \right]
137     \]
138    
139     where $l_c$ is an assigned critical value equal to $1.25$ g/kg.
140     A memory is associated with convective clouds defined by:
141    
142     \[
143     F_{RAS}^n = \min\left[ F_{RAS} + (1-{\Delta t_{RAS}\over\tau})F_{RAS}^{n-1}, 1.0 \right]
144     \]
145    
146     where $F_{RAS}$ is the instantanious cloud fraction and $F_{RAS}^{n-1}$ is the cloud fraction
147     from the previous RAS timestep. The memory coefficient is computed using a RAS cloud timescale,
148     $\tau$, equal to 1 hour. RAS cloud fractions are cleared when they fall below 5 \%.
149    
150     Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative
151     humidity:
152    
153     \[
154     F_{LS} = \min\left[ { \left( {RH-RH_c \over 1-RH_c} \right) }^2, 1.0 \right]
155     \]
156    
157     where
158    
159     \bqa
160     RH_c & = & 1-s(1-s)(2-\sqrt{3}+2\sqrt{3} \, s)r \nonumber \\
161     s & = & p/p_{surf} \nonumber \\
162     r & = & \left( {1.0-RH_{min} \over \alpha} \right) \nonumber \\
163     RH_{min} & = & 0.75 \nonumber \\
164     \alpha & = & 0.573285 \nonumber .
165     \eqa
166    
167     These cloud fractions are suppressed, however, in regions where the convective
168     sub-cloud layer is conditionally unstable. The functional form of $RH_c$ is shown in
169     Figure (\ref{fig:fizhi:rhcrit}).
170    
171     \begin{figure*}[htbp]
172     \vspace{0.4in}
173 molod 1.4 \centerline{ \epsfysize=4.0in \epsfbox{part6/rhcrit.ps}}
174 molod 1.1 \vspace{0.4in}
175     \caption [Critical Relative Humidity for Clouds.]
176     {Critical Relative Humidity for Clouds.}
177     \label{fig:fizhi:rhcrit}
178     \end{figure*}
179    
180     The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:
181    
182     \[
183     F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .
184     \]
185    
186     Finally, cloud fractions are time-averaged between calls to the radiation packages.
187    
188    
189     \subsubsection{Radiation}
190    
191     The parameterization of radiative heating in the fizhi package includes effects
192     from both shortwave and longwave processes.
193     Radiative fluxes are calculated at each
194     model edge-level in both up and down directions.
195     The heating rates/cooling rates are then obtained
196     from the vertical divergence of the net radiative fluxes.
197    
198     The net flux is
199     \[
200     F = F^\uparrow - F^\downarrow
201     \]
202     where $F$ is the net flux, $F^\uparrow$ is the upward flux and $F^\downarrow$ is
203     the downward flux.
204    
205     The heating rate due to the divergence of the radiative flux is given by
206     \[
207     \pp{\rho c_p T}{t} = - \pp{F}{z}
208     \]
209     or
210     \[
211     \pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}
212     \]
213     where $g$ is the accelation due to gravity
214     and $c_p$ is the heat capacity of air at constant pressure.
215    
216     The time tendency for Longwave
217     Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is updated once
218     every three hours assuming a normalized incident solar radiation, and subsequently modified at
219     every model time step by the true incident radiation.
220     The solar constant value used in the package is equal to 1365 $W/m^2$
221     and a $CO_2$ mixing ratio of 330 ppm.
222     For the ozone mixing ratio, monthly mean zonally averaged
223     climatological values specified as a function
224     of latitude and height (Rosenfield, et al., 1987) are linearly interpolated to the current time.
225    
226    
227 molod 1.5 \paragraph{Shortwave Radiation}
228 molod 1.1
229     The shortwave radiation package used in the package computes solar radiative
230     heating due to the absoption by water vapor, ozone, carbon dioxide, oxygen,
231     clouds, and aerosols and due to the
232     scattering by clouds, aerosols, and gases.
233     The shortwave radiative processes are described by
234     Chou (1990,1992). This shortwave package
235     uses the Delta-Eddington approximation to compute the
236     bulk scattering properties of a single layer following King and Harshvardhan (JAS, 1986).
237     The transmittance and reflectance of diffuse radiation
238     follow the procedures of Sagan and Pollock (JGR, 1967) and Lacis and Hansen (JAS, 1974).
239    
240     Highly accurate heating rate calculations are obtained through the use
241     of an optimal grouping strategy of spectral bands. By grouping the UV and visible regions
242     as indicated in Table \ref{tab:fizhi:solar2}, the Rayleigh scattering and the ozone absorption of solar radiation
243     can be accurately computed in the ultraviolet region and the photosynthetically
244     active radiation (PAR) region.
245     The computation of solar flux in the infrared region is performed with a broadband
246     parameterization using the spectrum regions shown in Table \ref{tab:fizhi:solar1}.
247     The solar radiation algorithm used in the fizhi package can be applied not only for climate studies but
248     also for studies on the photolysis in the upper atmosphere and the photosynthesis in the biosphere.
249    
250     \begin{table}[htb]
251     \begin{center}
252     {\bf UV and Visible Spectral Regions} \\
253     \vspace{0.1in}
254     \begin{tabular}{|c|c|c|}
255     \hline
256     Region & Band & Wavelength (micron) \\ \hline
257     \hline
258     UV-C & 1. & .175 - .225 \\
259     & 2. & .225 - .245 \\
260     & & .260 - .280 \\
261     & 3. & .245 - .260 \\ \hline
262     UV-B & 4. & .280 - .295 \\
263     & 5. & .295 - .310 \\
264     & 6. & .310 - .320 \\ \hline
265     UV-A & 7. & .320 - .400 \\ \hline
266     PAR & 8. & .400 - .700 \\
267     \hline
268     \end{tabular}
269     \end{center}
270     \caption{UV and Visible Spectral Regions used in shortwave radiation package.}
271     \label{tab:fizhi:solar2}
272     \end{table}
273    
274     \begin{table}[htb]
275     \begin{center}
276     {\bf Infrared Spectral Regions} \\
277     \vspace{0.1in}
278     \begin{tabular}{|c|c|c|}
279     \hline
280     Band & Wavenumber(cm$^{-1}$) & Wavelength (micron) \\ \hline
281     \hline
282     1 & 1000-4400 & 2.27-10.0 \\
283     2 & 4400-8200 & 1.22-2.27 \\
284     3 & 8200-14300 & 0.70-1.22 \\
285     \hline
286     \end{tabular}
287     \end{center}
288     \caption{Infrared Spectral Regions used in shortwave radiation package.}
289     \label{tab:fizhi:solar1}
290     \end{table}
291    
292     Within the shortwave radiation package,
293     both ice and liquid cloud particles are allowed to co-exist in any of the model layers.
294     Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles.
295     Cloud parameters are defined as the cloud optical thickness and the effective cloud particle size.
296     In the fizhi package, the effective radius for water droplets is given as 10 microns,
297     while 65 microns is used for ice particles. The absorption due to aerosols is currently
298     set to zero.
299    
300     To simplify calculations in a cloudy atmosphere, clouds are
301     grouped into low ($p>700$ mb), middle (700 mb $\ge p > 400$ mb), and high ($p < 400$ mb) cloud regions.
302     Within each of the three regions, clouds are assumed maximally
303     overlapped, and the cloud cover of the group is the maximum
304     cloud cover of all the layers in the group. The optical thickness
305     of a given layer is then scaled for both the direct (as a function of the
306     solar zenith angle) and diffuse beam radiation
307     so that the grouped layer reflectance is the same as the original reflectance.
308     The solar flux is computed for each of the eight cloud realizations possible
309     (see Figure \ref{fig:fizhi:cloud}) within this
310     low/middle/high classification, and appropriately averaged to produce the net solar flux.
311    
312     \begin{figure*}[htbp]
313     \vspace{0.4in}
314 molod 1.4 \centerline{ \epsfysize=4.0in %\epsfbox{part6/rhcrit.ps}
315 molod 1.1 }
316     \vspace{0.4in}
317     \caption {Low-Middle-High Cloud Configurations}
318     \label{fig:fizhi:cloud}
319     \end{figure*}
320    
321    
322 molod 1.5 \paragraph{Longwave Radiation}
323 molod 1.1
324     The longwave radiation package used in the fizhi package is thoroughly described by Chou and Suarez (1994).
325     As described in that document, IR fluxes are computed due to absorption by water vapor, carbon
326     dioxide, and ozone. The spectral bands together with their absorbers and parameterization methods,
327     configured for the fizhi package, are shown in Table \ref{tab:fizhi:longwave}.
328    
329    
330     \begin{table}[htb]
331     \begin{center}
332     {\bf IR Spectral Bands} \\
333     \vspace{0.1in}
334     \begin{tabular}{|c|c|l|c| }
335     \hline
336     Band & Spectral Range (cm$^{-1}$) & Absorber & Method \\ \hline
337     \hline
338     1 & 0-340 & H$_2$O line & T \\ \hline
339     2 & 340-540 & H$_2$O line & T \\ \hline
340     3a & 540-620 & H$_2$O line & K \\
341     3b & 620-720 & H$_2$O continuum & S \\
342     3b & 720-800 & CO$_2$ & T \\ \hline
343     4 & 800-980 & H$_2$O line & K \\
344     & & H$_2$O continuum & S \\ \hline
345     & & H$_2$O line & K \\
346     5 & 980-1100 & H$_2$O continuum & S \\
347     & & O$_3$ & T \\ \hline
348     6 & 1100-1380 & H$_2$O line & K \\
349     & & H$_2$O continuum & S \\ \hline
350     7 & 1380-1900 & H$_2$O line & T \\ \hline
351     8 & 1900-3000 & H$_2$O line & K \\ \hline
352     \hline
353     \multicolumn{4}{|l|}{ \quad K: {\em k}-distribution method with linear pressure scaling } \\
354     \multicolumn{4}{|l|}{ \quad T: Table look-up with temperature and pressure scaling } \\
355     \multicolumn{4}{|l|}{ \quad S: One-parameter temperature scaling } \\
356     \hline
357     \end{tabular}
358     \end{center}
359     \vspace{0.1in}
360     \caption{IR Spectral Bands, Absorbers, and Parameterization Method (from Chou and Suarez, 1994)}
361     \label{tab:fizhi:longwave}
362     \end{table}
363    
364    
365     The longwave radiation package accurately computes cooling rates for the middle and
366     lower atmosphere from 0.01 mb to the surface. Errors are $<$ 0.4 C day$^{-1}$ in cooling
367     rates and $<$ 1\% in fluxes. From Chou and Suarez, it is estimated that the total effect of
368     neglecting all minor absorption bands and the effects of minor infrared absorbers such as
369     nitrous oxide (N$_2$O), methane (CH$_4$), and the chlorofluorocarbons (CFCs), is an underestimate
370     of $\approx$ 5 W/m$^2$ in the downward flux at the surface and an overestimate of $\approx$ 3 W/m$^2$
371     in the upward flux at the top of the atmosphere.
372    
373     Similar to the procedure used in the shortwave radiation package, clouds are grouped into
374     three regions catagorized as low/middle/high.
375     The net clear line-of-site probability $(P)$ between any two levels, $p_1$ and $p_2 \quad (p_2 > p_1)$,
376     assuming randomly overlapped cloud groups, is simply the product of the probabilities within each group:
377    
378     \[ P_{net} = P_{low} \times P_{mid} \times P_{hi} . \]
379    
380     Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within
381     a group is given by:
382    
383     \[ P_{group} = 1 - F_{max} , \]
384    
385     where $F_{max}$ is the maximum cloud fraction encountered between $p_1$ and $p_2$ within that group.
386     For groups and/or levels outside the range of $p_1$ and $p_2$, a clear line-of-site probability equal to 1 is
387     assigned.
388    
389    
390 molod 1.5 \paragraph{Cloud-Radiation Interaction}
391 molod 1.1 \label{sec:fizhi:radcloud}
392    
393     The cloud fractions and diagnosed cloud liquid water produced by moist processes
394     within the fizhi package are used in the radiation packages to produce cloud-radiative forcing.
395     The cloud optical thickness associated with large-scale cloudiness is made
396     proportional to the diagnosed large-scale liquid water, $\ell$, detrained due to super-saturation.
397     Two values are used corresponding to cloud ice particles and water droplets.
398     The range of optical thickness for these clouds is given as
399    
400     \[ 0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002 \quad\mbox{for}\quad 0 \le \ell \le 2 \quad\mbox{mg/kg} , \]
401     \[ 0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2 \quad\mbox{for}\quad 0 \le \ell \le 10 \quad\mbox{mg/kg} . \]
402    
403     The partitioning, $\alpha$, between ice particles and water droplets is achieved through a linear scaling
404     in temperature:
405    
406     \[ 0 \le \alpha \le 1 \quad\mbox{for}\quad 233.15 \le T \le 253.15 . \]
407    
408     The resulting optical depth associated with large-scale cloudiness is given as
409    
410     \[ \tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} . \]
411    
412     The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as
413    
414     \[ \tau_{RAS} = 0.16 \quad mb^{-1} . \]
415    
416     The total optical depth in a given model layer is computed as a weighted average between
417     the large-scale and sub-grid scale optical depths, normalized by the total cloud fraction in the
418     layer:
419    
420     \[ \tau = \left( {F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} \over F_{RAS}+F_{LS} } \right) \Delta p, \]
421    
422     where $F_{RAS}$ and $F_{LS}$ are the time-averaged cloud fractions associated with RAS and large-scale
423     processes described in Section \ref{sec:fizhi:clouds}.
424     The optical thickness for the longwave radiative feedback is assumed to be 75 $\%$ of these values.
425    
426     The entire Moist Convective Processes Module is called with a frequency of 10 minutes.
427     The cloud fraction values are time-averaged over the period between Radiation calls (every 3
428     hours). Therefore, in a time-averaged sense, both convective and large-scale
429     cloudiness can exist in a given grid-box.
430    
431     \subsubsection{Turbulence}
432     Turbulence is parameterized in the fizhi package to account for its contribution to the
433     vertical exchange of heat, moisture, and momentum.
434     The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit iterative
435     time scheme with an internal time step of 5 minutes.
436     The tendencies of atmospheric state variables due to turbulent diffusion are calculated using
437     the diffusion equations:
438    
439     \[
440     {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
441     = {\pp{}{z} }{(K_m \pp{u}{z})}
442     \]
443     \[
444     {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
445     = {\pp{}{z} }{(K_m \pp{v}{z})}
446     \]
447     \[
448     {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
449     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
450     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
451     \]
452     \[
453     {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
454     = {\pp{}{z} }{(K_h \pp{q}{z})}
455     \]
456    
457     Within the atmosphere, the time evolution
458     of second turbulent moments is explicitly modeled by representing the third moments in terms of
459     the first and second moments. This approach is known as a second-order closure modeling.
460     To simplify and streamline the computation of the second moments, the level 2.5 assumption
461     of Mellor and Yamada (1974) and Yamada (1977) is employed, in which only the turbulent
462     kinetic energy (TKE),
463    
464     \[ {\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}}, \]
465    
466     is solved prognostically and the other second moments are solved diagnostically.
467     The prognostic equation for TKE allows the scheme to simulate
468     some of the transient and diffusive effects in the turbulence. The TKE budget equation
469     is solved numerically using an implicit backward computation of the terms linear in $q^2$
470     and is written:
471    
472     \[
473     {\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ {5 \over 3} {{\lambda}_1} q { \pp {}{z}
474     ({\h}q^2)} })} =
475     {- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
476     { \pp{V}{z} }} + {{g \over {\Theta_0}}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}} }
477     - { q^3 \over {{\Lambda} _1} }
478     \]
479    
480     where $q$ is the turbulent velocity, ${u^{\prime}}$, ${v^{\prime}}$, ${w^{\prime}}$ and
481     ${{\theta}^{\prime}}$ are the fluctuating parts of the velocity components and potential
482     temperature, $U$ and $V$ are the mean velocity components, ${\Theta_0}^{-1}$ is the
483     coefficient of thermal expansion, and ${{\lambda}_1}$ and ${{\Lambda} _1}$ are constant
484     multiples of the master length scale, $\ell$, which is designed to be a characteristic measure
485     of the vertical structure of the turbulent layers.
486    
487     The first term on the left-hand side represents the time rate of change of TKE, and
488     the second term is a representation of the triple correlation, or turbulent
489     transport term. The first three terms on the right-hand side represent the sources of
490     TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation
491     of TKE.
492    
493     In the level 2.5 approach, the vertical fluxes of the scalars $\theta_v$ and $q$ and the
494     wind components $u$ and $v$ are expressed in terms of the diffusion coefficients $K_h$ and
495     $K_m$, respectively. In the statisically realizable level 2.5 turbulence scheme of Helfand
496     and Labraga (1988), these diffusion coefficients are expressed as
497    
498     \[
499     K_h
500     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
501     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
502     \]
503    
504     and
505    
506     \[
507     K_m
508     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
509     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.
510     \]
511    
512     where the subscript $e$ refers to the value under conditions of local equillibrium
513     (obtained from the Level 2.0 Model), $\ell$ is the master length scale related to the
514     vertical structure of the atmosphere,
515     and $S_M$ and $S_H$ are functions of $G_H$ and $G_M$, the dimensionless buoyancy and
516     wind shear parameters, respectively.
517     Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
518     are functions of the Richardson number:
519    
520     \[
521     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
522     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } .
523     \]
524    
525     Negative values indicate unstable buoyancy and shear, small positive values ($<0.2$)
526     indicate dominantly unstable shear, and large positive values indicate dominantly stable
527     stratification.
528    
529     Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer,
530     which corresponds to the lowest GCM level (see \ref{tab:fizhi:sigma}),
531     are calculated using stability-dependant functions based on Monin-Obukhov theory:
532     \[
533     {K_m} (surface) = C_u \times u_* = C_D W_s
534     \]
535     and
536     \[
537     {K_h} (surface) = C_t \times u_* = C_H W_s
538     \]
539     where $u_*=C_uW_s$ is the surface friction velocity,
540     $C_D$ is termed the surface drag coefficient, $C_H$ the heat transfer coefficient,
541     and $W_s$ is the magnitude of the surface layer wind.
542    
543     $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
544     similarity functions:
545     \[
546     {C_u} = {u_* \over W_s} = { k \over \psi_{m} }
547     \]
548     where k is the Von Karman constant and $\psi_m$ is the surface layer non-dimensional
549     wind shear given by
550     \[
551     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} .
552     \]
553     Here $\zeta$ is the non-dimensional stability parameter, and
554     $\phi_m$ is the similarity function of $\zeta$ which expresses the stability dependance of
555     the momentum gradient. The functional form of $\phi_m$ is specified differently for stable and unstable
556     layers.
557    
558     $C_t$ is the dimensionless exchange coefficient for heat and
559     moisture from the surface layer similarity functions:
560     \[
561     {C_t} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
562     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
563     { k \over { (\psi_{h} + \psi_{g}) } }
564     \]
565     where $\psi_h$ is the surface layer non-dimensional temperature gradient given by
566     \[
567     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} .
568     \]
569     Here $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
570     the temperature and moisture gradients, and is specified differently for stable and unstable
571     layers according to Helfand and Schubert, 1995.
572    
573     $\psi_g$ is the non-dimensional temperature or moisture gradient in the viscous sublayer,
574     which is the mosstly laminar region between the surface and the tops of the roughness
575     elements, in which temperature and moisture gradients can be quite large.
576     Based on Yaglom and Kader (1974):
577     \[
578     \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
579     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
580     \]
581     where Pr is the Prandtl number for air, $\nu$ is the molecular viscosity, $z_{0}$ is the
582     surface roughness length, and the subscript {\em ref} refers to a reference value.
583     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
584    
585     The surface roughness length over oceans is is a function of the surface-stress velocity,
586     \[
587     {z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
588     \]
589     where the constants are chosen to interpolate between the reciprocal relation of
590     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
591     for moderate to large winds. Roughness lengths over land are specified
592     from the climatology of Dorman and Sellers (1989).
593    
594     For an unstable surface layer, the stability functions, chosen to interpolate between the
595     condition of small values of $\beta$ and the convective limit, are the KEYPS function
596     (Panofsky, 1973) for momentum, and its generalization for heat and moisture:
597     \[
598     {\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
599     {\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .
600     \]
601     The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind
602     speed approaches zero.
603    
604     For a stable surface layer, the stability functions are the observationally
605     based functions of Clarke (1970), slightly modified for
606     the momemtum flux:
607     \[
608     {\phi_m} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {{\zeta}_1}
609     (1+ 5 {{\zeta}_1}) } } \hspace{1cm} ; \hspace{1cm}
610     {\phi_h} = { { 1 + 5 {{\zeta}_1} } \over { 1 + 0.00794 {\zeta}
611     (1+ 5 {{\zeta}_1}) } } .
612     \]
613     The moisture flux also depends on a specified evapotranspiration
614     coefficient, set to unity over oceans and dependant on the climatological ground wetness over
615     land.
616    
617     Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically
618     using an implicit backward operator.
619    
620 molod 1.5 \paragraph{Atmospheric Boundary Layer}
621 molod 1.1
622     The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the
623     level at which the turbulent kinetic energy is reduced to a tenth of its maximum near surface value.
624     The vertical structure of the ABL is explicitly resolved by the lowest few (3-8) model layers.
625    
626 molod 1.5 \paragraph{Surface Energy Budget}
627 molod 1.1
628     The ground temperature equation is solved as part of the turbulence package
629     using a backward implicit time differencing scheme:
630     \[
631     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
632     \]
633     where $R_{sw}$ is the net surface downward shortwave radiative flux and $R_{lw}$ is the
634     net surface upward longwave radiative flux.
635    
636     $H$ is the upward sensible heat flux, given by:
637     \[
638     {H} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
639     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
640     \]
641     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
642     heat of air at constant pressure, and $\theta$ represents the potential temperature
643     of the surface and of the lowest $\sigma$-level, respectively.
644    
645     The upward latent heat flux, $LE$, is given by
646     \[
647     {LE} = \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
648     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
649     \]
650     where $\beta$ is the fraction of the potential evapotranspiration actually evaporated,
651     L is the latent heat of evaporation, and $q_{surface}$ and $q_{NLAY}$ are the specific
652     humidity of the surface and of the lowest $\sigma$-level, respectively.
653    
654     The heat conduction through sea ice, $Q_{ice}$, is given by
655     \[
656     {Q_{ice}} = {C_{ti} \over {H_i}} (T_i-T_g)
657     \]
658     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
659     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and $T_g$ is the
660     surface temperature of the ice.
661    
662     $C_g$ is the total heat capacity of the ground, obtained by solving a heat diffusion equation
663     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
664     \[
665     C_g = \sqrt{ {\lambda C_s \over 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
666     {86400 \over 2 \pi} } \, \, .
667     \]
668     Here, the thermal conductivity, $\lambda$, is equal to $2\times10^{-3}$ ${ly\over{ sec}}
669     {cm \over {^oK}}$,
670     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
671     by $2 \pi$ $radians/
672     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
673     is a function of the ground wetness, $W$.
674    
675     \subsubsection{Land Surface Processes}
676    
677 molod 1.5 \paragraph{Surface Type}
678 molod 1.1 The fizhi package surface Types are designated using the Koster-Suarez (1992) mosaic
679     philosophy which allows multiple ``tiles'', or multiple surface types, in any one
680     grid cell. The Koster-Suarez Land Surface Model (LSM) surface type classifications
681     are shown in Table \ref{tab:fizhi:surftype}. The surface types and the percent of the grid
682     cell occupied by any surface type were derived from the surface classification of
683     Defries and Townshend (1994), and information about the location of permanent
684     ice was obtained from the classifications of Dorman and Sellers (1989).
685     The surface type for the \txt GCM grid is shown in Figure \ref{fig:fizhi:surftype}.
686     The determination of the land or sea category of surface type was made from NCAR's
687     10 minute by 10 minute Navy topography
688     dataset, which includes information about the percentage of water-cover at any point.
689     The data were averaged to the model's \fxf and \txt grid resolutions,
690     and any grid-box whose averaged water percentage was $\geq 60 \%$ was
691     defined as a water point. The \fxf grid Land-Water designation was further modified
692     subjectively to ensure sufficient representation from small but isolated land and water regions.
693    
694     \begin{table}
695     \begin{center}
696     {\bf Surface Type Designation} \\
697     \vspace{0.1in}
698     \begin{tabular}{ |c|l| }
699     \hline
700     Type & Vegetation Designation \\ \hline
701     \hline
702     1 & Broadleaf Evergreen Trees \\ \hline
703     2 & Broadleaf Deciduous Trees \\ \hline
704     3 & Needleleaf Trees \\ \hline
705     4 & Ground Cover \\ \hline
706     5 & Broadleaf Shrubs \\ \hline
707     6 & Dwarf Trees (Tundra) \\ \hline
708     7 & Bare Soil \\ \hline
709     8 & Desert (Bright) \\ \hline
710     9 & Glacier \\ \hline
711     10 & Desert (Dark) \\ \hline
712     100 & Ocean \\ \hline
713     \end{tabular}
714     \end{center}
715     \caption{Surface type designations used to compute surface roughness (over land)
716     and surface albedo.}
717     \label{tab:fizhi:surftype}
718     \end{table}
719    
720    
721     \begin{figure*}[htbp]
722 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.ps}}
723 molod 1.1 \vspace{0.3in}
724     \caption {Surface Type Compinations at \txt resolution.}
725     \label{fig:fizhi:surftype}
726     \end{figure*}
727    
728     \begin{figure*}[htbp]
729 molod 1.4 \centerline{ \epsfysize=7in \epsfbox{part6/surftypes.descrip.ps}}
730 molod 1.1 \vspace{0.3in}
731     \caption {Surface Type Descriptions.}
732     \label{fig:fizhi:surftype.desc}
733     \end{figure*}
734    
735    
736 molod 1.5 \paragraph{Surface Roughness}
737 molod 1.1 The surface roughness length over oceans is computed iteratively with the wind
738     stress by the surface layer parameterization (Helfand and Schubert, 1991).
739     It employs an interpolation between the functions of Large and Pond (1981)
740     for high winds and of Kondo (1975) for weak winds.
741    
742    
743 molod 1.5 \paragraph{Albedo}
744 molod 1.1 The surface albedo computation, described in Koster and Suarez (1991),
745     employs the ``two stream'' approximation used in Sellers' (1987) Simple Biosphere (SiB)
746     Model which distinguishes between the direct and diffuse albedos in the visible
747     and in the near infra-red spectral ranges. The albedos are functions of the observed
748     leaf area index (a description of the relative orientation of the leaves to the
749     sun), the greenness fraction, the vegetation type, and the solar zenith angle.
750     Modifications are made to account for the presence of snow, and its depth relative
751     to the height of the vegetation elements.
752    
753     \subsubsection{Gravity Wave Drag}
754     The fizhi package employs the gravity wave drag scheme of Zhou et al. (1996).
755     This scheme is a modified version of Vernekar et al. (1992),
756     which was based on Alpert et al. (1988) and Helfand et al. (1987).
757     In this version, the gravity wave stress at the surface is
758     based on that derived by Pierrehumbert (1986) and is given by:
759    
760     \bq
761     |\vec{\tau}_{sfc}| = {\rho U^3\over{N \ell^*}} \left(F_r^2 \over{1+F_r^2}\right) \, \, ,
762     \eq
763    
764     where $F_r = N h /U$ is the Froude number, $N$ is the {\em Brunt - V\"{a}is\"{a}l\"{a}} frequency, $U$ is the
765     surface wind speed, $h$ is the standard deviation of the sub-grid scale orography,
766     and $\ell^*$ is the wavelength of the monochromatic gravity wave in the direction of the low-level wind.
767     A modification introduced by Zhou et al. allows for the momentum flux to
768     escape through the top of the model, although this effect is small for the current 70-level model.
769     The subgrid scale standard deviation is defined by $h$, and is not allowed to exceed 400 m.
770    
771     The effects of using this scheme within a GCM are shown in Takacs and Suarez (1996).
772     Experiments using the gravity wave drag parameterization yielded significant and
773     beneficial impacts on both the time-mean flow and the transient statistics of the
774     a GCM climatology, and have eliminated most of the worst dynamically driven biases
775     in the a GCM simulation.
776     An examination of the angular momentum budget during climate runs indicates that the
777     resulting gravity wave torque is similar to the data-driven torque produced by a data
778     assimilation which was performed without gravity
779     wave drag. It was shown that the inclusion of gravity wave drag results in
780     large changes in both the mean flow and in eddy fluxes.
781     The result is a more
782     accurate simulation of surface stress (through a reduction in the surface wind strength),
783     of mountain torque (through a redistribution of mean sea-level pressure), and of momentum
784     convergence (through a reduction in the flux of westerly momentum by transient flow eddies).
785    
786    
787     \subsubsection{Boundary Conditions and other Input Data}
788    
789     Required fields which are not explicitly predicted or diagnosed during model execution must
790     either be prescribed internally or obtained from external data sets. In the fizhi package these
791     fields include: sea surface temperature, sea ice estent, surface geopotential variance,
792     vegetation index, and the radiation-related background levels of: ozone, carbon dioxide,
793     and stratospheric moisture.
794    
795     Boundary condition data sets are available at the model's \fxf and \txt
796     resolutions for either climatological or yearly varying conditions.
797     Any frequency of boundary condition data can be used in the fizhi package;
798     however, the current selection of data is summarized in Table \ref{tab:fizhi:bcdata}\@.
799     The time mean values are interpolated during each model timestep to the
800     current time. Future model versions will incorporate boundary conditions at
801     higher spatial \mbox{($1^\circ$ x $1^\circ$)} resolutions.
802    
803     \begin{table}[htb]
804     \begin{center}
805     {\bf Fizhi Input Datasets} \\
806     \vspace{0.1in}
807     \begin{tabular}{|l|c|r|} \hline
808     \multicolumn{1}{|c}{Variable} & \multicolumn{1}{|c}{Frequency} & \multicolumn{1}{|c|}{Years} \\ \hline\hline
809     Sea Ice Extent & monthly & 1979-current, climatology \\ \hline
810     Sea Ice Extent & weekly & 1982-current, climatology \\ \hline
811     Sea Surface Temperature & monthly & 1979-current, climatology \\ \hline
812     Sea Surface Temperature & weekly & 1982-current, climatology \\ \hline
813     Zonally Averaged Upper-Level Moisture & monthly & climatology \\ \hline
814     Zonally Averaged Ozone Concentration & monthly & climatology \\ \hline
815     \end{tabular}
816     \end{center}
817     \caption{Boundary conditions and other input data used in the fizhi package. Also noted are the
818     current years and frequencies available.}
819     \label{tab:fizhi:bcdata}
820     \end{table}
821    
822    
823 molod 1.5 \paragraph{Topography and Topography Variance}
824 molod 1.1
825     Surface geopotential heights are provided from an averaging of the Navy 10 minute
826     by 10 minute dataset supplied by the National Center for Atmospheric Research (NCAR) to the
827     model's grid resolution. The original topography is first rotated to the proper grid-orientation
828     which is being run, and then
829     averages the data to the model resolution.
830     The averaged topography is then passed through a Lanczos (1966) filter in both dimensions
831     which removes the smallest
832     scales while inhibiting Gibbs phenomena.
833    
834     In one dimension, we may define a cyclic function in $x$ as:
835     \begin{equation}
836     f(x) = {a_0 \over 2} + \sum_{k=1}^N \left( a_k \cos(kx) + b_k \sin(kx) \right)
837     \label{eq:fizhi:filt}
838     \end{equation}
839     where $N = { {\rm IM} \over 2 }$ and ${\rm IM}$ is the total number of points in the $x$ direction.
840     Defining $\Delta x = { 2 \pi \over {\rm IM}}$, we may define the average of $f(x)$ over a
841     $2 \Delta x$ region as:
842    
843     \begin{equation}
844     \overline {f(x)} = {1 \over {2 \Delta x}} \int_{x-\Delta x}^{x+\Delta x} f(x^{\prime}) dx^{\prime}
845     \label{eq:fizhi:fave1}
846     \end{equation}
847    
848     Using equation (\ref{eq:fizhi:filt}) in equation (\ref{eq:fizhi:fave1}) and integrating, we may write:
849    
850     \begin{equation}
851     \overline {f(x)} = {a_0 \over 2} + {1 \over {2 \Delta x}}
852     \sum_{k=1}^N \left [
853     \left. a_k { \sin(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x} -
854     \left. b_k { \cos(kx^{\prime}) \over k } \right /_{x-\Delta x}^{x+\Delta x}
855     \right]
856     \end{equation}
857     or
858    
859     \begin{equation}
860     \overline {f(x)} = {a_0 \over 2} + \sum_{k=1}^N {\sin(k \Delta x) \over {k \Delta x}}
861     \left( a_k \cos(kx) + b_k \sin(kx) \right)
862     \label{eq:fizhi:fave2}
863     \end{equation}
864    
865     Thus, the Fourier wave amplitudes are simply modified by the Lanczos filter response
866     function ${\sin(k\Delta x) \over {k \Delta x}}$. This may be compared with an $mth$-order
867     Shapiro (1970) filter response function, defined as $1-\sin^m({k \Delta x \over 2})$,
868     shown in Figure \ref{fig:fizhi:lanczos}.
869     It should be noted that negative values in the topography resulting from
870     the filtering procedure are {\em not} filled.
871    
872     \begin{figure*}[htbp]
873 molod 1.4 \centerline{ \epsfysize=7.0in \epsfbox{part6/lanczos.ps}}
874 molod 1.1 \caption{ \label{fig:fizhi:lanczos} Comparison between the Lanczos and $mth$-order Shapiro filter
875     response functions for $m$ = 2, 4, and 8. }
876     \end{figure*}
877    
878     The standard deviation of the subgrid-scale topography
879     is computed from a modified version of the the Navy 10 minute by 10 minute dataset.
880     The 10 minute by 10 minute topography is passed through a wavelet
881     filter in both dimensions which removes the scale smaller than 20 minutes.
882     The topography is then averaged to $1^\circ x 1^\circ$ grid resolution, and then
883     re-interpolated back to the 10 minute by 10 minute resolution.
884     The sub-grid scale variance is constructed based on this smoothed dataset.
885    
886    
887 molod 1.5 \paragraph{Upper Level Moisture}
888 molod 1.1 The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas
889     Experiment (SAGE) as input into the model's radiation packages. The SAGE data is archived
890     as monthly zonal means at 5$^\circ$ latitudinal resolution. The data is interpolated to the
891     model's grid location and current time, and blended with the GCM's moisture data. Below 300 mb,
892     the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb,
893     a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
894    
895 molod 1.8
896     \subsection{Fizhi Diagnostics}
897    
898     \subsubsection{Fizhi Diagnostic Menu}
899     \label{sec:fizhi-diagnostics:menu}
900    
901     \begin{tabular}{llll}
902     \hline\hline
903     NAME & UNITS & LEVELS & DESCRIPTION \\
904     \hline
905    
906     &\\
907     UFLUX & $Newton/m^2$ & 1
908     &\begin{minipage}[t]{3in}
909     {Surface U-Wind Stress on the atmosphere}
910     \end{minipage}\\
911     VFLUX & $Newton/m^2$ & 1
912     &\begin{minipage}[t]{3in}
913     {Surface V-Wind Stress on the atmosphere}
914     \end{minipage}\\
915     HFLUX & $Watts/m^2$ & 1
916     &\begin{minipage}[t]{3in}
917     {Surface Flux of Sensible Heat}
918     \end{minipage}\\
919     EFLUX & $Watts/m^2$ & 1
920     &\begin{minipage}[t]{3in}
921     {Surface Flux of Latent Heat}
922     \end{minipage}\\
923     QICE & $Watts/m^2$ & 1
924     &\begin{minipage}[t]{3in}
925     {Heat Conduction through Sea-Ice}
926     \end{minipage}\\
927     RADLWG & $Watts/m^2$ & 1
928     &\begin{minipage}[t]{3in}
929     {Net upward LW flux at the ground}
930     \end{minipage}\\
931     RADSWG & $Watts/m^2$ & 1
932     &\begin{minipage}[t]{3in}
933     {Net downward SW flux at the ground}
934     \end{minipage}\\
935     RI & $dimensionless$ & Nrphys
936     &\begin{minipage}[t]{3in}
937     {Richardson Number}
938     \end{minipage}\\
939     CT & $dimensionless$ & 1
940     &\begin{minipage}[t]{3in}
941     {Surface Drag coefficient for T and Q}
942     \end{minipage}\\
943     CU & $dimensionless$ & 1
944     &\begin{minipage}[t]{3in}
945     {Surface Drag coefficient for U and V}
946     \end{minipage}\\
947     ET & $m^2/sec$ & Nrphys
948     &\begin{minipage}[t]{3in}
949     {Diffusivity coefficient for T and Q}
950     \end{minipage}\\
951     EU & $m^2/sec$ & Nrphys
952     &\begin{minipage}[t]{3in}
953     {Diffusivity coefficient for U and V}
954     \end{minipage}\\
955     TURBU & $m/sec/day$ & Nrphys
956     &\begin{minipage}[t]{3in}
957     {U-Momentum Changes due to Turbulence}
958     \end{minipage}\\
959     TURBV & $m/sec/day$ & Nrphys
960     &\begin{minipage}[t]{3in}
961     {V-Momentum Changes due to Turbulence}
962     \end{minipage}\\
963     TURBT & $deg/day$ & Nrphys
964     &\begin{minipage}[t]{3in}
965     {Temperature Changes due to Turbulence}
966     \end{minipage}\\
967     TURBQ & $g/kg/day$ & Nrphys
968     &\begin{minipage}[t]{3in}
969     {Specific Humidity Changes due to Turbulence}
970     \end{minipage}\\
971     MOISTT & $deg/day$ & Nrphys
972     &\begin{minipage}[t]{3in}
973     {Temperature Changes due to Moist Processes}
974     \end{minipage}\\
975     MOISTQ & $g/kg/day$ & Nrphys
976     &\begin{minipage}[t]{3in}
977     {Specific Humidity Changes due to Moist Processes}
978     \end{minipage}\\
979     RADLW & $deg/day$ & Nrphys
980     &\begin{minipage}[t]{3in}
981     {Net Longwave heating rate for each level}
982     \end{minipage}\\
983     RADSW & $deg/day$ & Nrphys
984     &\begin{minipage}[t]{3in}
985     {Net Shortwave heating rate for each level}
986     \end{minipage}\\
987     PREACC & $mm/day$ & 1
988     &\begin{minipage}[t]{3in}
989     {Total Precipitation}
990     \end{minipage}\\
991     PRECON & $mm/day$ & 1
992     &\begin{minipage}[t]{3in}
993     {Convective Precipitation}
994     \end{minipage}\\
995     TUFLUX & $Newton/m^2$ & Nrphys
996     &\begin{minipage}[t]{3in}
997     {Turbulent Flux of U-Momentum}
998     \end{minipage}\\
999     TVFLUX & $Newton/m^2$ & Nrphys
1000     &\begin{minipage}[t]{3in}
1001     {Turbulent Flux of V-Momentum}
1002     \end{minipage}\\
1003     TTFLUX & $Watts/m^2$ & Nrphys
1004     &\begin{minipage}[t]{3in}
1005     {Turbulent Flux of Sensible Heat}
1006     \end{minipage}\\
1007     \end{tabular}
1008    
1009     \newpage
1010     \vspace*{\fill}
1011     \begin{tabular}{llll}
1012     \hline\hline
1013     NAME & UNITS & LEVELS & DESCRIPTION \\
1014     \hline
1015    
1016     &\\
1017     TQFLUX & $Watts/m^2$ & Nrphys
1018     &\begin{minipage}[t]{3in}
1019     {Turbulent Flux of Latent Heat}
1020     \end{minipage}\\
1021     CN & $dimensionless$ & 1
1022     &\begin{minipage}[t]{3in}
1023     {Neutral Drag Coefficient}
1024     \end{minipage}\\
1025     WINDS & $m/sec$ & 1
1026     &\begin{minipage}[t]{3in}
1027     {Surface Wind Speed}
1028     \end{minipage}\\
1029     DTSRF & $deg$ & 1
1030     &\begin{minipage}[t]{3in}
1031     {Air/Surface virtual temperature difference}
1032     \end{minipage}\\
1033     TG & $deg$ & 1
1034     &\begin{minipage}[t]{3in}
1035     {Ground temperature}
1036     \end{minipage}\\
1037     TS & $deg$ & 1
1038     &\begin{minipage}[t]{3in}
1039     {Surface air temperature (Adiabatic from lowest model layer)}
1040     \end{minipage}\\
1041     DTG & $deg$ & 1
1042     &\begin{minipage}[t]{3in}
1043     {Ground temperature adjustment}
1044     \end{minipage}\\
1045    
1046     QG & $g/kg$ & 1
1047     &\begin{minipage}[t]{3in}
1048     {Ground specific humidity}
1049     \end{minipage}\\
1050     QS & $g/kg$ & 1
1051     &\begin{minipage}[t]{3in}
1052     {Saturation surface specific humidity}
1053     \end{minipage}\\
1054     TGRLW & $deg$ & 1
1055     &\begin{minipage}[t]{3in}
1056     {Instantaneous ground temperature used as input to the
1057     Longwave radiation subroutine}
1058     \end{minipage}\\
1059     ST4 & $Watts/m^2$ & 1
1060     &\begin{minipage}[t]{3in}
1061     {Upward Longwave flux at the ground ($\sigma T^4$)}
1062     \end{minipage}\\
1063     OLR & $Watts/m^2$ & 1
1064     &\begin{minipage}[t]{3in}
1065     {Net upward Longwave flux at the top of the model}
1066     \end{minipage}\\
1067     OLRCLR & $Watts/m^2$ & 1
1068     &\begin{minipage}[t]{3in}
1069     {Net upward clearsky Longwave flux at the top of the model}
1070     \end{minipage}\\
1071     LWGCLR & $Watts/m^2$ & 1
1072     &\begin{minipage}[t]{3in}
1073     {Net upward clearsky Longwave flux at the ground}
1074     \end{minipage}\\
1075     LWCLR & $deg/day$ & Nrphys
1076     &\begin{minipage}[t]{3in}
1077     {Net clearsky Longwave heating rate for each level}
1078     \end{minipage}\\
1079     TLW & $deg$ & Nrphys
1080     &\begin{minipage}[t]{3in}
1081     {Instantaneous temperature used as input to the Longwave radiation
1082     subroutine}
1083     \end{minipage}\\
1084     SHLW & $g/g$ & Nrphys
1085     &\begin{minipage}[t]{3in}
1086     {Instantaneous specific humidity used as input to the Longwave radiation
1087     subroutine}
1088     \end{minipage}\\
1089     OZLW & $g/g$ & Nrphys
1090     &\begin{minipage}[t]{3in}
1091     {Instantaneous ozone used as input to the Longwave radiation
1092     subroutine}
1093     \end{minipage}\\
1094     CLMOLW & $0-1$ & Nrphys
1095     &\begin{minipage}[t]{3in}
1096     {Maximum overlap cloud fraction used in the Longwave radiation
1097     subroutine}
1098     \end{minipage}\\
1099     CLDTOT & $0-1$ & Nrphys
1100     &\begin{minipage}[t]{3in}
1101     {Total cloud fraction used in the Longwave and Shortwave radiation
1102     subroutines}
1103     \end{minipage}\\
1104     LWGDOWN & $Watts/m^2$ & 1
1105     &\begin{minipage}[t]{3in}
1106     {Downwelling Longwave radiation at the ground}
1107     \end{minipage}\\
1108     GWDT & $deg/day$ & Nrphys
1109     &\begin{minipage}[t]{3in}
1110     {Temperature tendency due to Gravity Wave Drag}
1111     \end{minipage}\\
1112     RADSWT & $Watts/m^2$ & 1
1113     &\begin{minipage}[t]{3in}
1114     {Incident Shortwave radiation at the top of the atmosphere}
1115     \end{minipage}\\
1116     TAUCLD & $per 100 mb$ & Nrphys
1117     &\begin{minipage}[t]{3in}
1118     {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1119     \end{minipage}\\
1120     TAUCLDC & $Number$ & Nrphys
1121     &\begin{minipage}[t]{3in}
1122     {Cloud Optical Depth Counter}
1123     \end{minipage}\\
1124     \end{tabular}
1125     \vfill
1126    
1127     \newpage
1128     \vspace*{\fill}
1129     \begin{tabular}{llll}
1130     \hline\hline
1131     NAME & UNITS & LEVELS & DESCRIPTION \\
1132     \hline
1133    
1134     &\\
1135     CLDLOW & $0-1$ & Nrphys
1136     &\begin{minipage}[t]{3in}
1137     {Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)}
1138     \end{minipage}\\
1139     EVAP & $mm/day$ & 1
1140     &\begin{minipage}[t]{3in}
1141     {Surface evaporation}
1142     \end{minipage}\\
1143     DPDT & $hPa/day$ & 1
1144     &\begin{minipage}[t]{3in}
1145     {Surface Pressure tendency}
1146     \end{minipage}\\
1147     UAVE & $m/sec$ & Nrphys
1148     &\begin{minipage}[t]{3in}
1149     {Average U-Wind}
1150     \end{minipage}\\
1151     VAVE & $m/sec$ & Nrphys
1152     &\begin{minipage}[t]{3in}
1153     {Average V-Wind}
1154     \end{minipage}\\
1155     TAVE & $deg$ & Nrphys
1156     &\begin{minipage}[t]{3in}
1157     {Average Temperature}
1158     \end{minipage}\\
1159     QAVE & $g/kg$ & Nrphys
1160     &\begin{minipage}[t]{3in}
1161     {Average Specific Humidity}
1162     \end{minipage}\\
1163     OMEGA & $hPa/day$ & Nrphys
1164     &\begin{minipage}[t]{3in}
1165     {Vertical Velocity}
1166     \end{minipage}\\
1167     DUDT & $m/sec/day$ & Nrphys
1168     &\begin{minipage}[t]{3in}
1169     {Total U-Wind tendency}
1170     \end{minipage}\\
1171     DVDT & $m/sec/day$ & Nrphys
1172     &\begin{minipage}[t]{3in}
1173     {Total V-Wind tendency}
1174     \end{minipage}\\
1175     DTDT & $deg/day$ & Nrphys
1176     &\begin{minipage}[t]{3in}
1177     {Total Temperature tendency}
1178     \end{minipage}\\
1179     DQDT & $g/kg/day$ & Nrphys
1180     &\begin{minipage}[t]{3in}
1181     {Total Specific Humidity tendency}
1182     \end{minipage}\\
1183     VORT & $10^{-4}/sec$ & Nrphys
1184     &\begin{minipage}[t]{3in}
1185     {Relative Vorticity}
1186     \end{minipage}\\
1187     DTLS & $deg/day$ & Nrphys
1188     &\begin{minipage}[t]{3in}
1189     {Temperature tendency due to Stratiform Cloud Formation}
1190     \end{minipage}\\
1191     DQLS & $g/kg/day$ & Nrphys
1192     &\begin{minipage}[t]{3in}
1193     {Specific Humidity tendency due to Stratiform Cloud Formation}
1194     \end{minipage}\\
1195     USTAR & $m/sec$ & 1
1196     &\begin{minipage}[t]{3in}
1197     {Surface USTAR wind}
1198     \end{minipage}\\
1199     Z0 & $m$ & 1
1200     &\begin{minipage}[t]{3in}
1201     {Surface roughness}
1202     \end{minipage}\\
1203     FRQTRB & $0-1$ & Nrphys-1
1204     &\begin{minipage}[t]{3in}
1205     {Frequency of Turbulence}
1206     \end{minipage}\\
1207     PBL & $mb$ & 1
1208     &\begin{minipage}[t]{3in}
1209     {Planetary Boundary Layer depth}
1210     \end{minipage}\\
1211     SWCLR & $deg/day$ & Nrphys
1212     &\begin{minipage}[t]{3in}
1213     {Net clearsky Shortwave heating rate for each level}
1214     \end{minipage}\\
1215     OSR & $Watts/m^2$ & 1
1216     &\begin{minipage}[t]{3in}
1217     {Net downward Shortwave flux at the top of the model}
1218     \end{minipage}\\
1219     OSRCLR & $Watts/m^2$ & 1
1220     &\begin{minipage}[t]{3in}
1221     {Net downward clearsky Shortwave flux at the top of the model}
1222     \end{minipage}\\
1223     CLDMAS & $kg / m^2$ & Nrphys
1224     &\begin{minipage}[t]{3in}
1225     {Convective cloud mass flux}
1226     \end{minipage}\\
1227     UAVE & $m/sec$ & Nrphys
1228     &\begin{minipage}[t]{3in}
1229     {Time-averaged $u-Wind$}
1230     \end{minipage}\\
1231     \end{tabular}
1232     \vfill
1233    
1234     \newpage
1235     \vspace*{\fill}
1236     \begin{tabular}{llll}
1237     \hline\hline
1238     NAME & UNITS & LEVELS & DESCRIPTION \\
1239     \hline
1240    
1241     &\\
1242     VAVE & $m/sec$ & Nrphys
1243     &\begin{minipage}[t]{3in}
1244     {Time-averaged $v-Wind$}
1245     \end{minipage}\\
1246     TAVE & $deg$ & Nrphys
1247     &\begin{minipage}[t]{3in}
1248     {Time-averaged $Temperature$}
1249     \end{minipage}\\
1250     QAVE & $g/g$ & Nrphys
1251     &\begin{minipage}[t]{3in}
1252     {Time-averaged $Specific \, \, Humidity$}
1253     \end{minipage}\\
1254     RFT & $deg/day$ & Nrphys
1255     &\begin{minipage}[t]{3in}
1256     {Temperature tendency due Rayleigh Friction}
1257     \end{minipage}\\
1258     PS & $mb$ & 1
1259     &\begin{minipage}[t]{3in}
1260     {Surface Pressure}
1261     \end{minipage}\\
1262     QQAVE & $(m/sec)^2$ & Nrphys
1263     &\begin{minipage}[t]{3in}
1264     {Time-averaged $Turbulent Kinetic Energy$}
1265     \end{minipage}\\
1266     SWGCLR & $Watts/m^2$ & 1
1267     &\begin{minipage}[t]{3in}
1268     {Net downward clearsky Shortwave flux at the ground}
1269     \end{minipage}\\
1270     PAVE & $mb$ & 1
1271     &\begin{minipage}[t]{3in}
1272     {Time-averaged Surface Pressure}
1273     \end{minipage}\\
1274     DIABU & $m/sec/day$ & Nrphys
1275     &\begin{minipage}[t]{3in}
1276     {Total Diabatic forcing on $u-Wind$}
1277     \end{minipage}\\
1278     DIABV & $m/sec/day$ & Nrphys
1279     &\begin{minipage}[t]{3in}
1280     {Total Diabatic forcing on $v-Wind$}
1281     \end{minipage}\\
1282     DIABT & $deg/day$ & Nrphys
1283     &\begin{minipage}[t]{3in}
1284     {Total Diabatic forcing on $Temperature$}
1285     \end{minipage}\\
1286     DIABQ & $g/kg/day$ & Nrphys
1287     &\begin{minipage}[t]{3in}
1288     {Total Diabatic forcing on $Specific \, \, Humidity$}
1289     \end{minipage}\\
1290     RFU & $m/sec/day$ & Nrphys
1291     &\begin{minipage}[t]{3in}
1292     {U-Wind tendency due to Rayleigh Friction}
1293     \end{minipage}\\
1294     RFV & $m/sec/day$ & Nrphys
1295     &\begin{minipage}[t]{3in}
1296     {V-Wind tendency due to Rayleigh Friction}
1297     \end{minipage}\\
1298     GWDU & $m/sec/day$ & Nrphys
1299     &\begin{minipage}[t]{3in}
1300     {U-Wind tendency due to Gravity Wave Drag}
1301     \end{minipage}\\
1302     GWDU & $m/sec/day$ & Nrphys
1303     &\begin{minipage}[t]{3in}
1304     {V-Wind tendency due to Gravity Wave Drag}
1305     \end{minipage}\\
1306     GWDUS & $N/m^2$ & 1
1307     &\begin{minipage}[t]{3in}
1308     {U-Wind Gravity Wave Drag Stress at Surface}
1309     \end{minipage}\\
1310     GWDVS & $N/m^2$ & 1
1311     &\begin{minipage}[t]{3in}
1312     {V-Wind Gravity Wave Drag Stress at Surface}
1313     \end{minipage}\\
1314     GWDUT & $N/m^2$ & 1
1315     &\begin{minipage}[t]{3in}
1316     {U-Wind Gravity Wave Drag Stress at Top}
1317     \end{minipage}\\
1318     GWDVT & $N/m^2$ & 1
1319     &\begin{minipage}[t]{3in}
1320     {V-Wind Gravity Wave Drag Stress at Top}
1321     \end{minipage}\\
1322     LZRAD & $mg/kg$ & Nrphys
1323     &\begin{minipage}[t]{3in}
1324     {Estimated Cloud Liquid Water used in Radiation}
1325     \end{minipage}\\
1326     \end{tabular}
1327     \vfill
1328    
1329     \newpage
1330     \vspace*{\fill}
1331     \begin{tabular}{llll}
1332     \hline\hline
1333     NAME & UNITS & LEVELS & DESCRIPTION \\
1334     \hline
1335    
1336     &\\
1337     SLP & $mb$ & 1
1338     &\begin{minipage}[t]{3in}
1339     {Time-averaged Sea-level Pressure}
1340     \end{minipage}\\
1341     CLDFRC & $0-1$ & 1
1342     &\begin{minipage}[t]{3in}
1343     {Total Cloud Fraction}
1344     \end{minipage}\\
1345     TPW & $gm/cm^2$ & 1
1346     &\begin{minipage}[t]{3in}
1347     {Precipitable water}
1348     \end{minipage}\\
1349     U2M & $m/sec$ & 1
1350     &\begin{minipage}[t]{3in}
1351     {U-Wind at 2 meters}
1352     \end{minipage}\\
1353     V2M & $m/sec$ & 1
1354     &\begin{minipage}[t]{3in}
1355     {V-Wind at 2 meters}
1356     \end{minipage}\\
1357     T2M & $deg$ & 1
1358     &\begin{minipage}[t]{3in}
1359     {Temperature at 2 meters}
1360     \end{minipage}\\
1361     Q2M & $g/kg$ & 1
1362     &\begin{minipage}[t]{3in}
1363     {Specific Humidity at 2 meters}
1364     \end{minipage}\\
1365     U10M & $m/sec$ & 1
1366     &\begin{minipage}[t]{3in}
1367     {U-Wind at 10 meters}
1368     \end{minipage}\\
1369     V10M & $m/sec$ & 1
1370     &\begin{minipage}[t]{3in}
1371     {V-Wind at 10 meters}
1372     \end{minipage}\\
1373     T10M & $deg$ & 1
1374     &\begin{minipage}[t]{3in}
1375     {Temperature at 10 meters}
1376     \end{minipage}\\
1377     Q10M & $g/kg$ & 1
1378     &\begin{minipage}[t]{3in}
1379     {Specific Humidity at 10 meters}
1380     \end{minipage}\\
1381     DTRAIN & $kg/m^2$ & Nrphys
1382     &\begin{minipage}[t]{3in}
1383     {Detrainment Cloud Mass Flux}
1384     \end{minipage}\\
1385     QFILL & $g/kg/day$ & Nrphys
1386     &\begin{minipage}[t]{3in}
1387     {Filling of negative specific humidity}
1388     \end{minipage}\\
1389     \end{tabular}
1390     \vspace{1.5in}
1391     \vfill
1392    
1393     \newpage
1394     \vspace*{\fill}
1395     \begin{tabular}{llll}
1396     \hline\hline
1397     NAME & UNITS & LEVELS & DESCRIPTION \\
1398     \hline
1399    
1400     &\\
1401     DTCONV & $deg/sec$ & Nr
1402     &\begin{minipage}[t]{3in}
1403     {Temp Change due to Convection}
1404     \end{minipage}\\
1405     DQCONV & $g/kg/sec$ & Nr
1406     &\begin{minipage}[t]{3in}
1407     {Specific Humidity Change due to Convection}
1408     \end{minipage}\\
1409     RELHUM & $percent$ & Nr
1410     &\begin{minipage}[t]{3in}
1411     {Relative Humidity}
1412     \end{minipage}\\
1413     PRECLS & $g/m^2/sec$ & 1
1414     &\begin{minipage}[t]{3in}
1415     {Large Scale Precipitation}
1416     \end{minipage}\\
1417     ENPREC & $J/g$ & 1
1418     &\begin{minipage}[t]{3in}
1419     {Energy of Precipitation (snow, rain Temp)}
1420     \end{minipage}\\
1421     \end{tabular}
1422     \vspace{1.5in}
1423     \vfill
1424    
1425     \newpage
1426    
1427     \subsubsection{Fizhi Diagnostic Description}
1428    
1429     In this section we list and describe the diagnostic quantities available within the
1430     GCM. The diagnostics are listed in the order that they appear in the
1431     Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1432     In all cases, each diagnostic as currently archived on the output datasets
1433     is time-averaged over its diagnostic output frequency:
1434    
1435     \[
1436     {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1437     \]
1438     where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1439     output frequency of the diagnostic, and $\Delta t$ is
1440     the timestep over which the diagnostic is updated.
1441    
1442     { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1443    
1444     The zonal wind stress is the turbulent flux of zonal momentum from
1445     the surface.
1446     \[
1447     {\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1448     \]
1449     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1450     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1451     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1452     the zonal wind in the lowest model layer.
1453     \\
1454    
1455    
1456     { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1457    
1458     The meridional wind stress is the turbulent flux of meridional momentum from
1459     the surface.
1460     \[
1461     {\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1462     \]
1463     where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1464     drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1465     (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1466     the meridional wind in the lowest model layer.
1467     \\
1468    
1469     { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1470    
1471     The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1472     gradient of virtual potential temperature and the eddy exchange coefficient:
1473     \[
1474     {\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1475     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1476     \]
1477     where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1478     heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1479     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1480     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1481     for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1482     at the surface and at the bottom model level.
1483     \\
1484    
1485    
1486     { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1487    
1488     The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1489     gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1490     \[
1491     {\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1492     \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1493     \]
1494     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1495     the potential evapotranspiration actually evaporated, L is the latent
1496     heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1497     magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1498     for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1499     for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1500     humidity at the surface and at the bottom model level, respectively.
1501     \\
1502    
1503     { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1504    
1505     Over sea ice there is an additional source of energy at the surface due to the heat
1506     conduction from the relatively warm ocean through the sea ice. The heat conduction
1507     through sea ice represents an additional energy source term for the ground temperature equation.
1508    
1509     \[
1510     {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1511     \]
1512    
1513     where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1514     be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1515     $T_g$ is the temperature of the sea ice.
1516    
1517     NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1518     \\
1519    
1520    
1521     { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1522    
1523     \begin{eqnarray*}
1524     {\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\
1525     & = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1526     \end{eqnarray*}
1527     \\
1528     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1529     $F_{LW}^\uparrow$ is
1530     the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1531     \\
1532    
1533     { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1534    
1535     \begin{eqnarray*}
1536     {\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\
1537     & = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1538     \end{eqnarray*}
1539     \\
1540     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1541     $F_{SW}^\downarrow$ is
1542     the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1543     \\
1544    
1545    
1546     \noindent
1547     { \underline {RI} Richardson Number} ($dimensionless$)
1548    
1549     \noindent
1550     The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1551     \[
1552     {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1553     = { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1554     \]
1555     \\
1556     where we used the hydrostatic equation:
1557     \[
1558     {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1559     \]
1560     Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1561     indicate dominantly unstable shear, and large positive values indicate dominantly stable
1562     stratification.
1563     \\
1564    
1565     \noindent
1566     { \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1567    
1568     \noindent
1569     The surface exchange coefficient is obtained from the similarity functions for the stability
1570     dependant flux profile relationships:
1571     \[
1572     {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1573     -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1574     { k \over { (\psi_{h} + \psi_{g}) } }
1575     \]
1576     where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1577     viscous sublayer non-dimensional temperature or moisture change:
1578     \[
1579     \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1580     \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1581     (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1582     \]
1583     and:
1584     $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1585    
1586     \noindent
1587     $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1588     the temperature and moisture gradients, specified differently for stable and unstable
1589     layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1590     non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1591     viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1592     (see diagnostic number 67), and the subscript ref refers to a reference value.
1593     \\
1594    
1595     \noindent
1596     { \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) }
1597    
1598     \noindent
1599     The surface exchange coefficient is obtained from the similarity functions for the stability
1600     dependant flux profile relationships:
1601     \[
1602     {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1603     \]
1604     where $\psi_m$ is the surface layer non-dimensional wind shear:
1605     \[
1606     \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1607     \]
1608     \noindent
1609     $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1610     the temperature and moisture gradients, specified differently for stable and unstable layers
1611     according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1612     non-dimensional stability parameter, $u_*$ is the surface stress velocity
1613     (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1614     \\
1615    
1616     \noindent
1617     { \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1618    
1619     \noindent
1620     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1621     moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1622     diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1623     or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1624     takes the form:
1625     \[
1626     {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1627     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1628     \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1629     \]
1630     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1631     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1632     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1633     depth,
1634     $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1635     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1636     dimensionless buoyancy and wind shear
1637     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1638     are functions of the Richardson number.
1639    
1640     \noindent
1641     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1642     see Helfand and Labraga, 1988.
1643    
1644     \noindent
1645     In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1646     in units of $m/sec$, given by:
1647     \[
1648     {\bf ET_{Nrphys}} = C_t * u_* = C_H W_s
1649     \]
1650     \noindent
1651     where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1652     surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1653     friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1654     and $W_s$ is the magnitude of the surface layer wind.
1655     \\
1656    
1657     \noindent
1658     { \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) }
1659    
1660     \noindent
1661     In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1662     momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1663     diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1664     In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1665     takes the form:
1666     \[
1667     {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1668     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1669     \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1670     \]
1671     \noindent
1672     where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1673     energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1674     which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1675     depth,
1676     $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1677     wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1678     dimensionless buoyancy and wind shear
1679     parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1680     are functions of the Richardson number.
1681    
1682     \noindent
1683     For the detailed equations and derivations of the modified level 2.5 closure scheme,
1684     see Helfand and Labraga, 1988.
1685    
1686     \noindent
1687     In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1688     in units of $m/sec$, given by:
1689     \[
1690     {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1691     \]
1692     \noindent
1693     where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1694     similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1695     (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1696     magnitude of the surface layer wind.
1697     \\
1698    
1699     \noindent
1700     { \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1701    
1702     \noindent
1703     The tendency of U-Momentum due to turbulence is written:
1704     \[
1705     {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1706     = {\pp{}{z} }{(K_m \pp{u}{z})}
1707     \]
1708    
1709     \noindent
1710     The Helfand and Labraga level 2.5 scheme models the turbulent
1711     flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1712     equation.
1713    
1714     \noindent
1715     { \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1716    
1717     \noindent
1718     The tendency of V-Momentum due to turbulence is written:
1719     \[
1720     {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1721     = {\pp{}{z} }{(K_m \pp{v}{z})}
1722     \]
1723    
1724     \noindent
1725     The Helfand and Labraga level 2.5 scheme models the turbulent
1726     flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1727     equation.
1728     \\
1729    
1730     \noindent
1731     { \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) }
1732    
1733     \noindent
1734     The tendency of temperature due to turbulence is written:
1735     \[
1736     {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1737     P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1738     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1739     \]
1740    
1741     \noindent
1742     The Helfand and Labraga level 2.5 scheme models the turbulent
1743     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1744     equation.
1745     \\
1746    
1747     \noindent
1748     { \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) }
1749    
1750     \noindent
1751     The tendency of specific humidity due to turbulence is written:
1752     \[
1753     {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1754     = {\pp{}{z} }{(K_h \pp{q}{z})}
1755     \]
1756    
1757     \noindent
1758     The Helfand and Labraga level 2.5 scheme models the turbulent
1759     flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1760     equation.
1761     \\
1762    
1763     \noindent
1764     { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1765    
1766     \noindent
1767     \[
1768     {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1769     \]
1770     where:
1771     \[
1772     \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1773     \hspace{.4cm} and
1774     \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1775     \]
1776     and
1777     \[
1778     \Gamma_s = g \eta \pp{s}{p}
1779     \]
1780    
1781     \noindent
1782     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1783     precipitation processes, or supersaturation rain.
1784     The summation refers to contributions from each cloud type called by RAS.
1785     The dry static energy is given
1786     as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1787     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1788     the description of the convective parameterization. The fractional adjustment, or relaxation
1789     parameter, for each cloud type is given as $\alpha$, while
1790     $R$ is the rain re-evaporation adjustment.
1791     \\
1792    
1793     \noindent
1794     { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1795    
1796     \noindent
1797     \[
1798     {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1799     \]
1800     where:
1801     \[
1802     \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1803     \hspace{.4cm} and
1804     \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1805     \]
1806     and
1807     \[
1808     \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1809     \]
1810     \noindent
1811     The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1812     precipitation processes, or supersaturation rain.
1813     The summation refers to contributions from each cloud type called by RAS.
1814     The dry static energy is given as $s$,
1815     the moist static energy is given as $h$,
1816     the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1817     given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1818     the description of the convective parameterization. The fractional adjustment, or relaxation
1819     parameter, for each cloud type is given as $\alpha$, while
1820     $R$ is the rain re-evaporation adjustment.
1821     \\
1822    
1823     \noindent
1824     { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1825    
1826     \noindent
1827     The net longwave heating rate is calculated as the vertical divergence of the
1828     net terrestrial radiative fluxes.
1829     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1830     longwave routine.
1831     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1832     For a given cloud fraction,
1833     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1834     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1835     for the upward and downward radiative fluxes.
1836     (see Section \ref{sec:fizhi:radcloud}).
1837     The cloudy-sky flux is then obtained as:
1838    
1839     \noindent
1840     \[
1841     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1842     \]
1843    
1844     \noindent
1845     Finally, the net longwave heating rate is calculated as the vertical divergence of the
1846     net terrestrial radiative fluxes:
1847     \[
1848     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1849     \]
1850     or
1851     \[
1852     {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1853     \]
1854    
1855     \noindent
1856     where $g$ is the accelation due to gravity,
1857     $c_p$ is the heat capacity of air at constant pressure,
1858     and
1859     \[
1860     F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1861     \]
1862     \\
1863    
1864    
1865     \noindent
1866     { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1867    
1868     \noindent
1869     The net Shortwave heating rate is calculated as the vertical divergence of the
1870     net solar radiative fluxes.
1871     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1872     For the clear-sky case, the shortwave fluxes and heating rates are computed with
1873     both CLMO (maximum overlap cloud fraction) and
1874     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1875     The shortwave routine is then called a second time, for the cloudy-sky case, with the
1876     true time-averaged cloud fractions CLMO
1877     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
1878     input at the top of the atmosphere.
1879    
1880     \noindent
1881     The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1882     \[
1883     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1884     \]
1885     or
1886     \[
1887     {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1888     \]
1889    
1890     \noindent
1891     where $g$ is the accelation due to gravity,
1892     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1893     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1894     \[
1895     F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1896     \]
1897     \\
1898    
1899     \noindent
1900     { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1901    
1902     \noindent
1903     For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1904     the vertical integral or total precipitable amount is given by:
1905     \[
1906     {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist}
1907     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1908     \]
1909     \\
1910    
1911     \noindent
1912     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1913     time step, scaled to $mm/day$.
1914     \\
1915    
1916     \noindent
1917     { \underline {PRECON} Convective Precipition ($mm/day$) }
1918    
1919     \noindent
1920     For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1921     the vertical integral or total precipitable amount is given by:
1922     \[
1923     {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum}
1924     {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1925     \]
1926     \\
1927    
1928     \noindent
1929     A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1930     time step, scaled to $mm/day$.
1931     \\
1932    
1933     \noindent
1934     { \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) }
1935    
1936     \noindent
1937     The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1938     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1939    
1940     \[
1941     {\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} =
1942     {\rho } {(- K_m \pp{U}{z})}
1943     \]
1944    
1945     \noindent
1946     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1947     \\
1948    
1949     \noindent
1950     { \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) }
1951    
1952     \noindent
1953     The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1954     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1955    
1956     \[
1957     {\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1958     {\rho } {(- K_m \pp{V}{z})}
1959     \]
1960    
1961     \noindent
1962     where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1963     \\
1964    
1965    
1966     \noindent
1967     { \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1968    
1969     \noindent
1970     The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1971     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1972    
1973     \noindent
1974     \[
1975     {\bf TTFLUX} = c_p {\rho }
1976     P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1977     = c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1978     \]
1979    
1980     \noindent
1981     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1982     \\
1983    
1984    
1985     \noindent
1986     { \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) }
1987    
1988     \noindent
1989     The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1990     \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1991    
1992     \noindent
1993     \[
1994     {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1995     {L {\rho }(- K_h \pp{q}{z})}
1996     \]
1997    
1998     \noindent
1999     where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2000     \\
2001    
2002    
2003     \noindent
2004     { \underline {CN} Neutral Drag Coefficient ($dimensionless$) }
2005    
2006     \noindent
2007     The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2008     \[
2009     {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2010     \]
2011    
2012     \noindent
2013     where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2014     $z_0$ is the surface roughness.
2015    
2016     \noindent
2017     NOTE: CN is not available through model version 5.3, but is available in subsequent
2018     versions.
2019     \\
2020    
2021     \noindent
2022     { \underline {WINDS} Surface Wind Speed ($meter/sec$) }
2023    
2024     \noindent
2025     The surface wind speed is calculated for the last internal turbulence time step:
2026     \[
2027     {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2028     \]
2029    
2030     \noindent
2031     where the subscript $Nrphys$ refers to the lowest model level.
2032     \\
2033    
2034     \noindent
2035     { \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2036    
2037     \noindent
2038     The air/surface virtual temperature difference measures the stability of the surface layer:
2039     \[
2040     {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2041     \]
2042     \noindent
2043     where
2044     \[
2045     \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2046     and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2047     \]
2048    
2049     \noindent
2050     $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2051     $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2052     and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2053     refers to the surface.
2054     \\
2055    
2056    
2057     \noindent
2058     { \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) }
2059    
2060     \noindent
2061     The ground temperature equation is solved as part of the turbulence package
2062     using a backward implicit time differencing scheme:
2063     \[
2064     {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2065     C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2066     \]
2067    
2068     \noindent
2069     where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2070     net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2071     sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2072     flux, and $C_g$ is the total heat capacity of the ground.
2073     $C_g$ is obtained by solving a heat diffusion equation
2074     for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2075     \[
2076     C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2077     { 86400. \over {2 \pi} } } \, \, .
2078     \]
2079     \noindent
2080     Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2081     {cm \over {^oK}}$,
2082     the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2083     by $2 \pi$ $radians/
2084     day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2085     is a function of the ground wetness, $W$.
2086     \\
2087    
2088     \noindent
2089     { \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) }
2090    
2091     \noindent
2092     The surface temperature estimate is made by assuming that the model's lowest
2093     layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2094     The surface temperature is therefore:
2095     \[
2096     {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2097     \]
2098     \\
2099    
2100     \noindent
2101     { \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2102    
2103     \noindent
2104     The change in surface temperature from one turbulence time step to the next, solved
2105     using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2106     \[
2107     {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2108     \]
2109    
2110     \noindent
2111     where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2112     refers to the value at the previous turbulence time level.
2113     \\
2114    
2115     \noindent
2116     { \underline {QG} Ground Specific Humidity ($g/kg$) }
2117    
2118     \noindent
2119     The ground specific humidity is obtained by interpolating between the specific
2120     humidity at the lowest model level and the specific humidity of a saturated ground.
2121     The interpolation is performed using the potential evapotranspiration function:
2122     \[
2123     {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2124     \]
2125    
2126     \noindent
2127     where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2128     and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2129     pressure.
2130     \\
2131    
2132     \noindent
2133     { \underline {QS} Saturation Surface Specific Humidity ($g/kg$) }
2134    
2135     \noindent
2136     The surface saturation specific humidity is the saturation specific humidity at
2137     the ground temprature and surface pressure:
2138     \[
2139     {\bf QS} = q^*(T_g,P_s)
2140     \]
2141     \\
2142    
2143     \noindent
2144     { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2145     radiation subroutine (deg)}
2146     \[
2147     {\bf TGRLW} = T_g(\lambda , \phi ,n)
2148     \]
2149     \noindent
2150     where $T_g$ is the model ground temperature at the current time step $n$.
2151     \\
2152    
2153    
2154     \noindent
2155     { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2156     \[
2157     {\bf ST4} = \sigma T^4
2158     \]
2159     \noindent
2160     where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2161     \\
2162    
2163     \noindent
2164     { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2165     \[
2166     {\bf OLR} = F_{LW,top}^{NET}
2167     \]
2168     \noindent
2169     where top indicates the top of the first model layer.
2170     In the GCM, $p_{top}$ = 0.0 mb.
2171     \\
2172    
2173    
2174     \noindent
2175     { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2176     \[
2177     {\bf OLRCLR} = F(clearsky)_{LW,top}^{NET}
2178     \]
2179     \noindent
2180     where top indicates the top of the first model layer.
2181     In the GCM, $p_{top}$ = 0.0 mb.
2182     \\
2183    
2184     \noindent
2185     { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2186    
2187     \noindent
2188     \begin{eqnarray*}
2189     {\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2190     & = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2191     \end{eqnarray*}
2192     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2193     $F(clearsky)_{LW}^\uparrow$ is
2194     the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2195     \\
2196    
2197     \noindent
2198     { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2199    
2200     \noindent
2201     The net longwave heating rate is calculated as the vertical divergence of the
2202     net terrestrial radiative fluxes.
2203     Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2204     longwave routine.
2205     The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2206     For a given cloud fraction,
2207     the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2208     to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2209     for the upward and downward radiative fluxes.
2210     (see Section \ref{sec:fizhi:radcloud}).
2211     The cloudy-sky flux is then obtained as:
2212    
2213     \noindent
2214     \[
2215     F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2216     \]
2217    
2218     \noindent
2219     Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2220     vertical divergence of the
2221     clear-sky longwave radiative flux:
2222     \[
2223     \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2224     \]
2225     or
2226     \[
2227     {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2228     \]
2229    
2230     \noindent
2231     where $g$ is the accelation due to gravity,
2232     $c_p$ is the heat capacity of air at constant pressure,
2233     and
2234     \[
2235     F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2236     \]
2237     \\
2238    
2239    
2240     \noindent
2241     { \underline {TLW} Instantaneous temperature used as input to the Longwave
2242     radiation subroutine (deg)}
2243     \[
2244     {\bf TLW} = T(\lambda , \phi ,level, n)
2245     \]
2246     \noindent
2247     where $T$ is the model temperature at the current time step $n$.
2248     \\
2249    
2250    
2251     \noindent
2252     { \underline {SHLW} Instantaneous specific humidity used as input to
2253     the Longwave radiation subroutine (kg/kg)}
2254     \[
2255     {\bf SHLW} = q(\lambda , \phi , level , n)
2256     \]
2257     \noindent
2258     where $q$ is the model specific humidity at the current time step $n$.
2259     \\
2260    
2261    
2262     \noindent
2263     { \underline {OZLW} Instantaneous ozone used as input to
2264     the Longwave radiation subroutine (kg/kg)}
2265     \[
2266     {\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n)
2267     \]
2268     \noindent
2269     where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2270     mean zonally averaged ozone data set.
2271     \\
2272    
2273    
2274     \noindent
2275     { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2276    
2277     \noindent
2278     {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2279     Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are
2280     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2281     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2282     \[
2283     {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level )
2284     \]
2285     \\
2286    
2287    
2288     { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2289    
2290     {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2291     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2292     Radiation packages.
2293     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2294     \[
2295     {\bf CLDTOT} = F_{RAS} + F_{LS}
2296     \]
2297     \\
2298     where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2299     time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2300     \\
2301    
2302    
2303     \noindent
2304     { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2305    
2306     \noindent
2307     {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2308     Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are
2309     convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2310     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2311     \[
2312     {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level )
2313     \]
2314     \\
2315    
2316     \noindent
2317     { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2318    
2319     \noindent
2320     {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2321     Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2322     Radiation algorithm. These are
2323     convective and large-scale clouds whose radiative characteristics are not
2324     assumed to be correlated in the vertical.
2325     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2326     \[
2327     {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level )
2328     \]
2329     \\
2330    
2331     \noindent
2332     { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2333     \[
2334     {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2335     \]
2336     \noindent
2337     where $S_0$, is the extra-terrestial solar contant,
2338     $R_a$ is the earth-sun distance in Astronomical Units,
2339     and $cos \phi_z$ is the cosine of the zenith angle.
2340     It should be noted that {\bf RADSWT}, as well as
2341     {\bf OSR} and {\bf OSRCLR},
2342     are calculated at the top of the atmosphere (p=0 mb). However, the
2343     {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2344     calculated at $p= p_{top}$ (0.0 mb for the GCM).
2345     \\
2346    
2347     \noindent
2348     { \underline {EVAP} Surface Evaporation ($mm/day$) }
2349    
2350     \noindent
2351     The surface evaporation is a function of the gradient of moisture, the potential
2352     evapotranspiration fraction and the eddy exchange coefficient:
2353     \[
2354     {\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2355     \]
2356     where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2357     the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2358     turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2359     $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2360     number 34) and at the bottom model level, respectively.
2361     \\
2362    
2363     \noindent
2364     { \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) }
2365    
2366     \noindent
2367     {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2368     and Analysis forcing.
2369     \[
2370     {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2371     \]
2372     \\
2373    
2374     \noindent
2375     { \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) }
2376    
2377     \noindent
2378     {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2379     and Analysis forcing.
2380     \[
2381     {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2382     \]
2383     \\
2384    
2385     \noindent
2386     { \underline {DTDT} Total Temperature Tendency ($deg/day$) }
2387    
2388     \noindent
2389     {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2390     and Analysis forcing.
2391     \begin{eqnarray*}
2392     {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2393     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2394     \end{eqnarray*}
2395     \\
2396    
2397     \noindent
2398     { \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) }
2399    
2400     \noindent
2401     {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2402     and Analysis forcing.
2403     \[
2404     {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2405     + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2406     \]
2407     \\
2408    
2409     \noindent
2410     { \underline {USTAR} Surface-Stress Velocity ($m/sec$) }
2411    
2412     \noindent
2413     The surface stress velocity, or the friction velocity, is the wind speed at
2414     the surface layer top impeded by the surface drag:
2415     \[
2416     {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2417     C_u = {k \over {\psi_m} }
2418     \]
2419    
2420     \noindent
2421     $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2422     number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2423    
2424     \noindent
2425     { \underline {Z0} Surface Roughness Length ($m$) }
2426    
2427     \noindent
2428     Over the land surface, the surface roughness length is interpolated to the local
2429     time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2430     the roughness length is a function of the surface-stress velocity, $u_*$.
2431     \[
2432     {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2433     \]
2434    
2435     \noindent
2436     where the constants are chosen to interpolate between the reciprocal relation of
2437     Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2438     for moderate to large winds.
2439     \\
2440    
2441     \noindent
2442     { \underline {FRQTRB} Frequency of Turbulence ($0-1$) }
2443    
2444     \noindent
2445     The fraction of time when turbulence is present is defined as the fraction of
2446     time when the turbulent kinetic energy exceeds some minimum value, defined here
2447     to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2448     incremented. The fraction over the averaging interval is reported.
2449     \\
2450    
2451     \noindent
2452     { \underline {PBL} Planetary Boundary Layer Depth ($mb$) }
2453    
2454     \noindent
2455     The depth of the PBL is defined by the turbulence parameterization to be the
2456     depth at which the turbulent kinetic energy reduces to ten percent of its surface
2457     value.
2458    
2459     \[
2460     {\bf PBL} = P_{PBL} - P_{surface}
2461     \]
2462    
2463     \noindent
2464     where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2465     reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2466     \\
2467    
2468     \noindent
2469     { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2470    
2471     \noindent
2472     The net Shortwave heating rate is calculated as the vertical divergence of the
2473     net solar radiative fluxes.
2474     The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2475     For the clear-sky case, the shortwave fluxes and heating rates are computed with
2476     both CLMO (maximum overlap cloud fraction) and
2477     CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2478     The shortwave routine is then called a second time, for the cloudy-sky case, with the
2479     true time-averaged cloud fractions CLMO
2480     and CLRO being used. In all cases, a normalized incident shortwave flux is used as
2481     input at the top of the atmosphere.
2482    
2483     \noindent
2484     The heating rate due to Shortwave Radiation under clear skies is defined as:
2485     \[
2486     \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2487     \]
2488     or
2489     \[
2490     {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2491     \]
2492    
2493     \noindent
2494     where $g$ is the accelation due to gravity,
2495     $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2496     shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2497     \[
2498     F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2499     \]
2500     \\
2501    
2502     \noindent
2503     { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2504     \[
2505     {\bf OSR} = F_{SW,top}^{NET}
2506     \]
2507     \noindent
2508     where top indicates the top of the first model layer used in the shortwave radiation
2509     routine.
2510     In the GCM, $p_{SW_{top}}$ = 0 mb.
2511     \\
2512    
2513     \noindent
2514     { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2515     \[
2516     {\bf OSRCLR} = F(clearsky)_{SW,top}^{NET}
2517     \]
2518     \noindent
2519     where top indicates the top of the first model layer used in the shortwave radiation
2520     routine.
2521     In the GCM, $p_{SW_{top}}$ = 0 mb.
2522     \\
2523    
2524    
2525     \noindent
2526     { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2527    
2528     \noindent
2529     The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2530     \[
2531     {\bf CLDMAS} = \eta m_B
2532     \]
2533     where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2534     the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2535     description of the convective parameterization.
2536     \\
2537    
2538    
2539    
2540     \noindent
2541     { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2542    
2543     \noindent
2544     The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2545     the {\bf NUAVE} output frequency. This is contrasted to the instantaneous
2546     Zonal U-Wind which is archived on the Prognostic Output data stream.
2547     \[
2548     {\bf UAVE} = u(\lambda, \phi, level , t)
2549     \]
2550     \\
2551     Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2552     \\
2553    
2554     \noindent
2555     { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2556    
2557     \noindent
2558     The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2559     the {\bf NVAVE} output frequency. This is contrasted to the instantaneous
2560     Meridional V-Wind which is archived on the Prognostic Output data stream.
2561     \[
2562     {\bf VAVE} = v(\lambda, \phi, level , t)
2563     \]
2564     \\
2565     Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2566     \\
2567    
2568     \noindent
2569     { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2570    
2571     \noindent
2572     The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2573     the {\bf NTAVE} output frequency. This is contrasted to the instantaneous
2574     Temperature which is archived on the Prognostic Output data stream.
2575     \[
2576     {\bf TAVE} = T(\lambda, \phi, level , t)
2577     \]
2578     \\
2579    
2580     \noindent
2581     { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2582    
2583     \noindent
2584     The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2585     the {\bf NQAVE} output frequency. This is contrasted to the instantaneous
2586     Specific Humidity which is archived on the Prognostic Output data stream.
2587     \[
2588     {\bf QAVE} = q(\lambda, \phi, level , t)
2589     \]
2590     \\
2591    
2592     \noindent
2593     { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2594    
2595     \noindent
2596     The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2597     the {\bf NPAVE} output frequency. This is contrasted to the instantaneous
2598     Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2599     \begin{eqnarray*}
2600     {\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\
2601     & = & p_s(\lambda, \phi, level , t) - p_T
2602     \end{eqnarray*}
2603     \\
2604    
2605    
2606     \noindent
2607     { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2608    
2609     \noindent
2610     The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2611     produced by the GCM Turbulence parameterization over
2612     the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous
2613     Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2614     \[
2615     {\bf QQAVE} = qq(\lambda, \phi, level , t)
2616     \]
2617     \\
2618     Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2619     \\
2620    
2621     \noindent
2622     { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2623    
2624     \noindent
2625     \begin{eqnarray*}
2626     {\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2627     & = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2628     \end{eqnarray*}
2629     \noindent
2630     \\
2631     where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2632     $F(clearsky){SW}^\downarrow$ is
2633     the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2634     the upward clearsky Shortwave flux.
2635     \\
2636    
2637     \noindent
2638     { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) }
2639    
2640     \noindent
2641     {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2642     and the Analysis forcing.
2643     \[
2644     {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2645     \]
2646     \\
2647    
2648     \noindent
2649     { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) }
2650    
2651     \noindent
2652     {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2653     and the Analysis forcing.
2654     \[
2655     {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2656     \]
2657     \\
2658    
2659     \noindent
2660     { \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) }
2661    
2662     \noindent
2663     {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2664     and the Analysis forcing.
2665     \begin{eqnarray*}
2666     {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2667     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2668     \end{eqnarray*}
2669     \\
2670     If we define the time-tendency of Temperature due to Diabatic processes as
2671     \begin{eqnarray*}
2672     \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2673     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2674     \end{eqnarray*}
2675     then, since there are no surface pressure changes due to Diabatic processes, we may write
2676     \[
2677     \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2678     \]
2679     where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as
2680     \[
2681     {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2682     \]
2683     \\
2684    
2685     \noindent
2686     { \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) }
2687    
2688     \noindent
2689     {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2690     and the Analysis forcing.
2691     \[
2692     {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2693     \]
2694     If we define the time-tendency of Specific Humidity due to Diabatic processes as
2695     \[
2696     \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2697     \]
2698     then, since there are no surface pressure changes due to Diabatic processes, we may write
2699     \[
2700     \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2701     \]
2702     Thus, {\bf DIABQ} may be written as
2703     \[
2704     {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2705     \]
2706     \\
2707    
2708     \noindent
2709     { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2710    
2711     \noindent
2712     The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2713     $u q$ over the depth of the atmosphere at each model timestep,
2714     and dividing by the total mass of the column.
2715     \[
2716     {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz }
2717     \]
2718     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2719     \[
2720     {\bf VINTUQ} = { \int_0^1 u q dp }
2721     \]
2722     \\
2723    
2724    
2725     \noindent
2726     { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2727    
2728     \noindent
2729     The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2730     $v q$ over the depth of the atmosphere at each model timestep,
2731     and dividing by the total mass of the column.
2732     \[
2733     {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz }
2734     \]
2735     Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2736     \[
2737     {\bf VINTVQ} = { \int_0^1 v q dp }
2738     \]
2739     \\
2740    
2741    
2742     \noindent
2743     { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2744    
2745     \noindent
2746     The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2747     $u T$ over the depth of the atmosphere at each model timestep,
2748     and dividing by the total mass of the column.
2749     \[
2750     {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz }
2751     \]
2752     Or,
2753     \[
2754     {\bf VINTUT} = { \int_0^1 u T dp }
2755     \]
2756     \\
2757    
2758     \noindent
2759     { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2760    
2761     \noindent
2762     The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2763     $v T$ over the depth of the atmosphere at each model timestep,
2764     and dividing by the total mass of the column.
2765     \[
2766     {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz }
2767     \]
2768     Using $\rho \delta z = -{\delta p \over g} $, we have
2769     \[
2770     {\bf VINTVT} = { \int_0^1 v T dp }
2771     \]
2772     \\
2773    
2774     \noindent
2775     { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2776    
2777     If we define the
2778     time-averaged random and maximum overlapped cloudiness as CLRO and
2779     CLMO respectively, then the probability of clear sky associated
2780     with random overlapped clouds at any level is (1-CLRO) while the probability of
2781     clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2782     The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2783     the total cloud fraction at each level may be obtained by
2784     1-(1-CLRO)*(1-CLMO).
2785    
2786     At any given level, we may define the clear line-of-site probability by
2787     appropriately accounting for the maximum and random overlap
2788     cloudiness. The clear line-of-site probability is defined to be
2789     equal to the product of the clear line-of-site probabilities
2790     associated with random and maximum overlap cloudiness. The clear
2791     line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2792     from the current pressure $p$
2793     to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2794     is simply 1.0 minus the largest maximum overlap cloud value along the
2795     line-of-site, ie.
2796    
2797     $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2798    
2799     Thus, even in the time-averaged sense it is assumed that the
2800     maximum overlap clouds are correlated in the vertical. The clear
2801     line-of-site probability associated with random overlap clouds is
2802     defined to be the product of the clear sky probabilities at each
2803     level along the line-of-site, ie.
2804    
2805     $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2806    
2807     The total cloud fraction at a given level associated with a line-
2808     of-site calculation is given by
2809    
2810     $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2811     \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2812    
2813    
2814     \noindent
2815     The 2-dimensional net cloud fraction as seen from the top of the
2816     atmosphere is given by
2817     \[
2818     {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2819     \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2820     \]
2821     \\
2822     For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2823    
2824    
2825     \noindent
2826     { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2827    
2828     \noindent
2829     The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2830     given by:
2831     \begin{eqnarray*}
2832     {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2833     & = & {\pi \over g} \int_0^1 q dp
2834     \end{eqnarray*}
2835     where we have used the hydrostatic relation
2836     $\rho \delta z = -{\delta p \over g} $.
2837     \\
2838    
2839    
2840     \noindent
2841     { \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2842    
2843     \noindent
2844     The u-wind at the 2-meter depth is determined from the similarity theory:
2845     \[
2846     {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2847     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2848     \]
2849    
2850     \noindent
2851     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2852     $sl$ refers to the height of the top of the surface layer. If the roughness height
2853     is above two meters, ${\bf U2M}$ is undefined.
2854     \\
2855    
2856     \noindent
2857     { \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2858    
2859     \noindent
2860     The v-wind at the 2-meter depth is a determined from the similarity theory:
2861     \[
2862     {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2863     { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2864     \]
2865    
2866     \noindent
2867     where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2868     $sl$ refers to the height of the top of the surface layer. If the roughness height
2869     is above two meters, ${\bf V2M}$ is undefined.
2870     \\
2871    
2872     \noindent
2873     { \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2874    
2875     \noindent
2876     The temperature at the 2-meter depth is a determined from the similarity theory:
2877     \[
2878     {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2879     P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2880     (\theta_{sl} - \theta_{surf}))
2881     \]
2882     where:
2883     \[
2884     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2885     \]
2886    
2887     \noindent
2888     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2889     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2890     $sl$ refers to the height of the top of the surface layer. If the roughness height
2891     is above two meters, ${\bf T2M}$ is undefined.
2892     \\
2893    
2894     \noindent
2895     { \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) }
2896    
2897     \noindent
2898     The specific humidity at the 2-meter depth is determined from the similarity theory:
2899     \[
2900     {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2901     P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2902     (q_{sl} - q_{surf}))
2903     \]
2904     where:
2905     \[
2906     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2907     \]
2908    
2909     \noindent
2910     where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2911     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2912     $sl$ refers to the height of the top of the surface layer. If the roughness height
2913     is above two meters, ${\bf Q2M}$ is undefined.
2914     \\
2915    
2916     \noindent
2917     { \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2918    
2919     \noindent
2920     The u-wind at the 10-meter depth is an interpolation between the surface wind
2921     and the model lowest level wind using the ratio of the non-dimensional wind shear
2922     at the two levels:
2923     \[
2924     {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2925     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2926     \]
2927    
2928     \noindent
2929     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2930     $sl$ refers to the height of the top of the surface layer.
2931     \\
2932    
2933     \noindent
2934     { \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2935    
2936     \noindent
2937     The v-wind at the 10-meter depth is an interpolation between the surface wind
2938     and the model lowest level wind using the ratio of the non-dimensional wind shear
2939     at the two levels:
2940     \[
2941     {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2942     { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2943     \]
2944    
2945     \noindent
2946     where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2947     $sl$ refers to the height of the top of the surface layer.
2948     \\
2949    
2950     \noindent
2951     { \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2952    
2953     \noindent
2954     The temperature at the 10-meter depth is an interpolation between the surface potential
2955     temperature and the model lowest level potential temperature using the ratio of the
2956     non-dimensional temperature gradient at the two levels:
2957     \[
2958     {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2959     P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2960     (\theta_{sl} - \theta_{surf}))
2961     \]
2962     where:
2963     \[
2964     \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2965     \]
2966    
2967     \noindent
2968     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2969     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2970     $sl$ refers to the height of the top of the surface layer.
2971     \\
2972    
2973     \noindent
2974     { \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) }
2975    
2976     \noindent
2977     The specific humidity at the 10-meter depth is an interpolation between the surface specific
2978     humidity and the model lowest level specific humidity using the ratio of the
2979     non-dimensional temperature gradient at the two levels:
2980     \[
2981     {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2982     P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2983     (q_{sl} - q_{surf}))
2984     \]
2985     where:
2986     \[
2987     q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2988     \]
2989    
2990     \noindent
2991     where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2992     the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2993     $sl$ refers to the height of the top of the surface layer.
2994     \\
2995    
2996     \noindent
2997     { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2998    
2999     The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3000     \[
3001     {\bf DTRAIN} = \eta_{r_D}m_B
3002     \]
3003     \noindent
3004     where $r_D$ is the detrainment level,
3005     $m_B$ is the cloud base mass flux, and $\eta$
3006     is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3007     \\
3008    
3009     \noindent
3010     { \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) }
3011    
3012     \noindent
3013     Due to computational errors associated with the numerical scheme used for
3014     the advection of moisture, negative values of specific humidity may be generated. The
3015     specific humidity is checked for negative values after every dynamics timestep. If negative
3016     values have been produced, a filling algorithm is invoked which redistributes moisture from
3017     below. Diagnostic {\bf QFILL} is equal to the net filling needed
3018     to eliminate negative specific humidity, scaled to a per-day rate:
3019     \[
3020     {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3021     \]
3022     where
3023     \[
3024     q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3025     \]
3026    
3027    
3028 molod 1.6 \subsection{Key subroutines, parameters and files}
3029    
3030     \subsection{Dos and donts}
3031    
3032     \subsection{Fizhi Reference}

  ViewVC Help
Powered by ViewVC 1.1.22