/[MITgcm]/manual/s_phys_pkgs/text/fizhi.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/fizhi.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by edhill, Tue Oct 12 18:16:03 2004 UTC revision 1.8 by molod, Thu Jul 14 19:18:02 2005 UTC
# Line 892  model's grid location and current time, Line 892  model's grid location and current time,
892  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,  the model's moisture data is used.  Above 100 mb, the SAGE data is used.  Between 100 and 300 mb,
893  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.  a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.
894    
895    
896    \subsection{Fizhi Diagnostics}
897    
898    \subsubsection{Fizhi Diagnostic Menu}
899    \label{sec:fizhi-diagnostics:menu}
900    
901    \begin{tabular}{llll}
902    \hline\hline
903     NAME & UNITS & LEVELS & DESCRIPTION \\
904    \hline
905    
906    &\\
907     UFLUX    &   $Newton/m^2$  &    1  
908             &\begin{minipage}[t]{3in}
909              {Surface U-Wind Stress on the atmosphere}
910             \end{minipage}\\
911     VFLUX    &   $Newton/m^2$  &    1  
912             &\begin{minipage}[t]{3in}
913              {Surface V-Wind Stress on the atmosphere}
914             \end{minipage}\\
915     HFLUX    &   $Watts/m^2$  &    1  
916             &\begin{minipage}[t]{3in}
917              {Surface Flux of Sensible Heat}
918             \end{minipage}\\
919     EFLUX    &   $Watts/m^2$  &    1  
920             &\begin{minipage}[t]{3in}
921              {Surface Flux of Latent Heat}
922             \end{minipage}\\
923     QICE     &   $Watts/m^2$  &    1  
924             &\begin{minipage}[t]{3in}
925              {Heat Conduction through Sea-Ice}
926             \end{minipage}\\
927     RADLWG   &   $Watts/m^2$ &    1  
928             &\begin{minipage}[t]{3in}
929              {Net upward LW flux at the ground}
930             \end{minipage}\\
931     RADSWG   &   $Watts/m^2$  &    1
932             &\begin{minipage}[t]{3in}
933              {Net downward SW flux at the ground}
934             \end{minipage}\\
935     RI       &  $dimensionless$ &  Nrphys
936             &\begin{minipage}[t]{3in}
937              {Richardson Number}
938             \end{minipage}\\
939     CT       &  $dimensionless$ &  1
940             &\begin{minipage}[t]{3in}
941              {Surface Drag coefficient for T and Q}
942             \end{minipage}\\
943     CU       & $dimensionless$ &  1
944         &\begin{minipage}[t]{3in}
945          {Surface Drag coefficient for U and V}
946         \end{minipage}\\
947     ET       &  $m^2/sec$ &  Nrphys
948         &\begin{minipage}[t]{3in}
949          {Diffusivity coefficient for T and Q}
950         \end{minipage}\\
951     EU       &  $m^2/sec$ &  Nrphys
952         &\begin{minipage}[t]{3in}
953          {Diffusivity coefficient for U and V}
954         \end{minipage}\\
955     TURBU    &  $m/sec/day$ &  Nrphys
956         &\begin{minipage}[t]{3in}
957          {U-Momentum Changes due to Turbulence}
958         \end{minipage}\\
959     TURBV    &  $m/sec/day$ &  Nrphys
960         &\begin{minipage}[t]{3in}
961          {V-Momentum Changes due to Turbulence}
962         \end{minipage}\\
963     TURBT    &  $deg/day$ &  Nrphys
964         &\begin{minipage}[t]{3in}
965          {Temperature Changes due to Turbulence}
966         \end{minipage}\\
967     TURBQ    &  $g/kg/day$ &  Nrphys
968         &\begin{minipage}[t]{3in}
969          {Specific Humidity Changes due to Turbulence}
970         \end{minipage}\\
971     MOISTT   &   $deg/day$ &  Nrphys
972         &\begin{minipage}[t]{3in}
973          {Temperature Changes due to Moist Processes}
974         \end{minipage}\\
975     MOISTQ   &  $g/kg/day$ &  Nrphys
976         &\begin{minipage}[t]{3in}
977          {Specific Humidity Changes due to Moist Processes}
978         \end{minipage}\\
979     RADLW    &  $deg/day$ &  Nrphys
980         &\begin{minipage}[t]{3in}
981          {Net Longwave heating rate for each level}
982         \end{minipage}\\
983     RADSW    &  $deg/day$ &  Nrphys
984         &\begin{minipage}[t]{3in}
985          {Net Shortwave heating rate for each level}
986         \end{minipage}\\
987     PREACC   &  $mm/day$ &  1
988         &\begin{minipage}[t]{3in}
989          {Total Precipitation}
990         \end{minipage}\\
991     PRECON   &  $mm/day$ &  1
992         &\begin{minipage}[t]{3in}
993          {Convective Precipitation}
994         \end{minipage}\\
995     TUFLUX   &  $Newton/m^2$ &  Nrphys
996         &\begin{minipage}[t]{3in}
997          {Turbulent Flux of U-Momentum}
998         \end{minipage}\\
999     TVFLUX   &  $Newton/m^2$ &  Nrphys
1000         &\begin{minipage}[t]{3in}
1001          {Turbulent Flux of V-Momentum}
1002         \end{minipage}\\
1003     TTFLUX   &  $Watts/m^2$ &  Nrphys
1004         &\begin{minipage}[t]{3in}
1005          {Turbulent Flux of Sensible Heat}
1006         \end{minipage}\\
1007    \end{tabular}
1008    
1009    \newpage
1010    \vspace*{\fill}
1011    \begin{tabular}{llll}
1012    \hline\hline
1013     NAME & UNITS & LEVELS & DESCRIPTION \\
1014    \hline
1015    
1016    &\\
1017     TQFLUX   &  $Watts/m^2$ &  Nrphys
1018         &\begin{minipage}[t]{3in}
1019          {Turbulent Flux of Latent Heat}
1020         \end{minipage}\\
1021     CN       &  $dimensionless$ &  1
1022         &\begin{minipage}[t]{3in}
1023          {Neutral Drag Coefficient}
1024         \end{minipage}\\
1025     WINDS     &  $m/sec$ &  1
1026         &\begin{minipage}[t]{3in}
1027          {Surface Wind Speed}
1028         \end{minipage}\\
1029     DTSRF     &  $deg$ &  1
1030         &\begin{minipage}[t]{3in}
1031          {Air/Surface virtual temperature difference}
1032         \end{minipage}\\
1033     TG        &  $deg$ &  1
1034         &\begin{minipage}[t]{3in}
1035          {Ground temperature}
1036         \end{minipage}\\
1037     TS        &  $deg$ &  1
1038         &\begin{minipage}[t]{3in}
1039          {Surface air temperature (Adiabatic from lowest model layer)}
1040         \end{minipage}\\
1041     DTG       &  $deg$ &  1
1042         &\begin{minipage}[t]{3in}
1043          {Ground temperature adjustment}
1044         \end{minipage}\\
1045    
1046     QG        &  $g/kg$ &  1
1047         &\begin{minipage}[t]{3in}
1048          {Ground specific humidity}
1049         \end{minipage}\\
1050     QS        &  $g/kg$ &  1
1051         &\begin{minipage}[t]{3in}
1052          {Saturation surface specific humidity}
1053         \end{minipage}\\
1054     TGRLW    &    $deg$   &    1  
1055         &\begin{minipage}[t]{3in}
1056          {Instantaneous ground temperature used as input to the
1057           Longwave radiation subroutine}
1058         \end{minipage}\\
1059     ST4      &   $Watts/m^2$  &    1  
1060         &\begin{minipage}[t]{3in}
1061          {Upward Longwave flux at the ground ($\sigma T^4$)}
1062         \end{minipage}\\
1063     OLR      &   $Watts/m^2$  &    1  
1064         &\begin{minipage}[t]{3in}
1065          {Net upward Longwave flux at the top of the model}
1066         \end{minipage}\\
1067     OLRCLR   &   $Watts/m^2$  &    1  
1068         &\begin{minipage}[t]{3in}
1069          {Net upward clearsky Longwave flux at the top of the model}
1070         \end{minipage}\\
1071     LWGCLR   &   $Watts/m^2$  &    1  
1072         &\begin{minipage}[t]{3in}
1073          {Net upward clearsky Longwave flux at the ground}
1074         \end{minipage}\\
1075     LWCLR    &  $deg/day$ &  Nrphys
1076         &\begin{minipage}[t]{3in}
1077          {Net clearsky Longwave heating rate for each level}
1078         \end{minipage}\\
1079     TLW      &    $deg$   &  Nrphys
1080         &\begin{minipage}[t]{3in}
1081          {Instantaneous temperature used as input to the Longwave radiation
1082          subroutine}
1083         \end{minipage}\\
1084     SHLW     &    $g/g$   &  Nrphys
1085         &\begin{minipage}[t]{3in}
1086          {Instantaneous specific humidity used as input to the Longwave radiation
1087          subroutine}
1088         \end{minipage}\\
1089     OZLW     &    $g/g$   &  Nrphys
1090         &\begin{minipage}[t]{3in}
1091          {Instantaneous ozone used as input to the Longwave radiation
1092          subroutine}
1093         \end{minipage}\\
1094     CLMOLW   &    $0-1$   &  Nrphys
1095         &\begin{minipage}[t]{3in}
1096          {Maximum overlap cloud fraction used in the Longwave radiation
1097          subroutine}
1098         \end{minipage}\\
1099     CLDTOT   &    $0-1$   &  Nrphys
1100         &\begin{minipage}[t]{3in}
1101          {Total cloud fraction used in the Longwave and Shortwave radiation
1102          subroutines}
1103         \end{minipage}\\
1104     LWGDOWN  &    $Watts/m^2$   &  1
1105         &\begin{minipage}[t]{3in}
1106          {Downwelling Longwave radiation at the ground}
1107         \end{minipage}\\
1108     GWDT     &    $deg/day$ &  Nrphys
1109         &\begin{minipage}[t]{3in}
1110          {Temperature tendency due to Gravity Wave Drag}
1111         \end{minipage}\\
1112     RADSWT   &    $Watts/m^2$   &  1
1113         &\begin{minipage}[t]{3in}
1114          {Incident Shortwave radiation at the top of the atmosphere}
1115         \end{minipage}\\
1116     TAUCLD   &    $per 100 mb$   &  Nrphys
1117         &\begin{minipage}[t]{3in}
1118          {Counted Cloud Optical Depth (non-dimensional) per 100 mb}
1119         \end{minipage}\\
1120     TAUCLDC  &    $Number$   &  Nrphys
1121         &\begin{minipage}[t]{3in}
1122          {Cloud Optical Depth Counter}
1123         \end{minipage}\\
1124    \end{tabular}
1125    \vfill
1126    
1127    \newpage
1128    \vspace*{\fill}
1129    \begin{tabular}{llll}
1130    \hline\hline
1131     NAME & UNITS & LEVELS & DESCRIPTION \\
1132    \hline
1133    
1134    &\\
1135     CLDLOW   &    $0-1$   &  Nrphys
1136         &\begin{minipage}[t]{3in}
1137          {Low-Level ( 1000-700 hPa) Cloud Fraction  (0-1)}
1138         \end{minipage}\\
1139     EVAP     &    $mm/day$   &  1
1140         &\begin{minipage}[t]{3in}
1141          {Surface evaporation}
1142         \end{minipage}\\
1143     DPDT     &    $hPa/day$ &  1
1144         &\begin{minipage}[t]{3in}
1145          {Surface Pressure tendency}
1146         \end{minipage}\\
1147     UAVE     &    $m/sec$ &  Nrphys
1148         &\begin{minipage}[t]{3in}
1149          {Average U-Wind}
1150         \end{minipage}\\
1151     VAVE     &    $m/sec$ &  Nrphys
1152         &\begin{minipage}[t]{3in}
1153          {Average V-Wind}
1154         \end{minipage}\\
1155     TAVE     &    $deg$ &  Nrphys
1156         &\begin{minipage}[t]{3in}
1157          {Average Temperature}
1158         \end{minipage}\\
1159     QAVE     &    $g/kg$ &  Nrphys
1160         &\begin{minipage}[t]{3in}
1161          {Average Specific Humidity}
1162         \end{minipage}\\
1163     OMEGA    &    $hPa/day$ &  Nrphys
1164         &\begin{minipage}[t]{3in}
1165          {Vertical Velocity}
1166         \end{minipage}\\
1167     DUDT     &    $m/sec/day$ &  Nrphys
1168         &\begin{minipage}[t]{3in}
1169          {Total U-Wind tendency}
1170         \end{minipage}\\
1171     DVDT     &    $m/sec/day$ &  Nrphys
1172         &\begin{minipage}[t]{3in}
1173          {Total V-Wind tendency}
1174         \end{minipage}\\
1175     DTDT     &    $deg/day$ &  Nrphys
1176         &\begin{minipage}[t]{3in}
1177          {Total Temperature tendency}
1178         \end{minipage}\\
1179     DQDT     &    $g/kg/day$ &  Nrphys
1180         &\begin{minipage}[t]{3in}
1181          {Total Specific Humidity tendency}
1182         \end{minipage}\\
1183     VORT     &    $10^{-4}/sec$ &  Nrphys
1184         &\begin{minipage}[t]{3in}
1185          {Relative Vorticity}
1186         \end{minipage}\\
1187     DTLS     &    $deg/day$ &  Nrphys
1188         &\begin{minipage}[t]{3in}
1189          {Temperature tendency due to Stratiform Cloud Formation}
1190         \end{minipage}\\
1191     DQLS     &    $g/kg/day$ &  Nrphys
1192         &\begin{minipage}[t]{3in}
1193          {Specific Humidity tendency due to Stratiform Cloud Formation}
1194         \end{minipage}\\
1195     USTAR    &    $m/sec$ &  1
1196         &\begin{minipage}[t]{3in}
1197          {Surface USTAR wind}
1198         \end{minipage}\\
1199     Z0       &    $m$ &  1
1200         &\begin{minipage}[t]{3in}
1201          {Surface roughness}
1202         \end{minipage}\\
1203     FRQTRB   &    $0-1$ &  Nrphys-1
1204         &\begin{minipage}[t]{3in}
1205          {Frequency of Turbulence}
1206         \end{minipage}\\
1207     PBL      &    $mb$ &  1
1208         &\begin{minipage}[t]{3in}
1209          {Planetary Boundary Layer depth}
1210         \end{minipage}\\
1211     SWCLR    &  $deg/day$ &  Nrphys
1212         &\begin{minipage}[t]{3in}
1213          {Net clearsky Shortwave heating rate for each level}
1214         \end{minipage}\\
1215     OSR      &   $Watts/m^2$  &    1
1216         &\begin{minipage}[t]{3in}
1217          {Net downward Shortwave flux at the top of the model}
1218         \end{minipage}\\
1219     OSRCLR   &   $Watts/m^2$  &    1  
1220         &\begin{minipage}[t]{3in}
1221          {Net downward clearsky Shortwave flux at the top of the model}
1222         \end{minipage}\\
1223     CLDMAS   &   $kg / m^2$  &    Nrphys
1224         &\begin{minipage}[t]{3in}
1225          {Convective cloud mass flux}
1226         \end{minipage}\\
1227     UAVE     &   $m/sec$  &    Nrphys
1228         &\begin{minipage}[t]{3in}
1229          {Time-averaged $u-Wind$}
1230         \end{minipage}\\
1231    \end{tabular}
1232    \vfill
1233    
1234    \newpage
1235    \vspace*{\fill}
1236    \begin{tabular}{llll}
1237    \hline\hline
1238     NAME & UNITS & LEVELS & DESCRIPTION \\
1239    \hline
1240    
1241    &\\
1242     VAVE     &   $m/sec$  &    Nrphys
1243         &\begin{minipage}[t]{3in}
1244          {Time-averaged $v-Wind$}
1245         \end{minipage}\\
1246     TAVE     &   $deg$  &    Nrphys
1247         &\begin{minipage}[t]{3in}
1248          {Time-averaged $Temperature$}
1249         \end{minipage}\\
1250     QAVE     &   $g/g$  &    Nrphys
1251         &\begin{minipage}[t]{3in}
1252          {Time-averaged $Specific \, \, Humidity$}
1253         \end{minipage}\\
1254     RFT      &    $deg/day$ &  Nrphys
1255         &\begin{minipage}[t]{3in}
1256          {Temperature tendency due Rayleigh Friction}
1257         \end{minipage}\\
1258     PS       &   $mb$  &    1
1259         &\begin{minipage}[t]{3in}
1260          {Surface Pressure}
1261         \end{minipage}\\
1262     QQAVE    &   $(m/sec)^2$  &    Nrphys
1263         &\begin{minipage}[t]{3in}
1264          {Time-averaged $Turbulent Kinetic Energy$}
1265         \end{minipage}\\
1266     SWGCLR   &   $Watts/m^2$  &    1  
1267         &\begin{minipage}[t]{3in}
1268          {Net downward clearsky Shortwave flux at the ground}
1269         \end{minipage}\\
1270     PAVE     &   $mb$  &    1
1271         &\begin{minipage}[t]{3in}
1272          {Time-averaged Surface Pressure}
1273         \end{minipage}\\
1274     DIABU    & $m/sec/day$ &    Nrphys
1275         &\begin{minipage}[t]{3in}
1276          {Total Diabatic forcing on $u-Wind$}
1277         \end{minipage}\\
1278     DIABV    & $m/sec/day$ &    Nrphys
1279         &\begin{minipage}[t]{3in}
1280          {Total Diabatic forcing on $v-Wind$}
1281         \end{minipage}\\
1282     DIABT    & $deg/day$ &    Nrphys
1283         &\begin{minipage}[t]{3in}
1284          {Total Diabatic forcing on $Temperature$}
1285         \end{minipage}\\
1286     DIABQ    & $g/kg/day$ &    Nrphys
1287         &\begin{minipage}[t]{3in}
1288          {Total Diabatic forcing on $Specific \, \, Humidity$}
1289         \end{minipage}\\
1290     RFU      &    $m/sec/day$ &  Nrphys
1291         &\begin{minipage}[t]{3in}
1292          {U-Wind tendency due to Rayleigh Friction}
1293         \end{minipage}\\
1294     RFV      &    $m/sec/day$ &  Nrphys
1295         &\begin{minipage}[t]{3in}
1296          {V-Wind tendency due to Rayleigh Friction}
1297         \end{minipage}\\
1298     GWDU     &    $m/sec/day$ &  Nrphys
1299         &\begin{minipage}[t]{3in}
1300          {U-Wind tendency due to Gravity Wave Drag}
1301         \end{minipage}\\
1302     GWDU     &    $m/sec/day$ &  Nrphys
1303         &\begin{minipage}[t]{3in}
1304          {V-Wind tendency due to Gravity Wave Drag}
1305         \end{minipage}\\
1306     GWDUS    &    $N/m^2$ &  1
1307         &\begin{minipage}[t]{3in}
1308          {U-Wind Gravity Wave Drag Stress at Surface}
1309         \end{minipage}\\
1310     GWDVS    &    $N/m^2$ &  1
1311         &\begin{minipage}[t]{3in}
1312          {V-Wind Gravity Wave Drag Stress at Surface}
1313         \end{minipage}\\
1314     GWDUT    &    $N/m^2$ &  1
1315         &\begin{minipage}[t]{3in}
1316          {U-Wind Gravity Wave Drag Stress at Top}
1317         \end{minipage}\\
1318     GWDVT    &    $N/m^2$ &  1
1319         &\begin{minipage}[t]{3in}
1320          {V-Wind Gravity Wave Drag Stress at Top}
1321         \end{minipage}\\
1322     LZRAD    &    $mg/kg$ &  Nrphys
1323             &\begin{minipage}[t]{3in}
1324              {Estimated Cloud Liquid Water used in Radiation}
1325             \end{minipage}\\
1326    \end{tabular}
1327    \vfill
1328    
1329    \newpage
1330    \vspace*{\fill}
1331    \begin{tabular}{llll}
1332    \hline\hline
1333     NAME & UNITS & LEVELS & DESCRIPTION \\
1334    \hline
1335    
1336    &\\
1337     SLP      &   $mb$  &    1
1338             &\begin{minipage}[t]{3in}
1339              {Time-averaged Sea-level Pressure}
1340             \end{minipage}\\
1341     CLDFRC  & $0-1$ &    1
1342             &\begin{minipage}[t]{3in}
1343              {Total Cloud Fraction}
1344             \end{minipage}\\
1345     TPW     & $gm/cm^2$ &    1
1346             &\begin{minipage}[t]{3in}
1347              {Precipitable water}
1348             \end{minipage}\\
1349     U2M     & $m/sec$ &    1
1350             &\begin{minipage}[t]{3in}
1351              {U-Wind at 2 meters}
1352             \end{minipage}\\
1353     V2M     & $m/sec$ &    1
1354             &\begin{minipage}[t]{3in}
1355              {V-Wind at 2 meters}
1356             \end{minipage}\\
1357     T2M     & $deg$ &    1
1358             &\begin{minipage}[t]{3in}
1359              {Temperature at 2 meters}
1360             \end{minipage}\\
1361     Q2M     & $g/kg$ &    1
1362             &\begin{minipage}[t]{3in}
1363              {Specific Humidity at 2 meters}
1364             \end{minipage}\\
1365     U10M    & $m/sec$ &    1
1366             &\begin{minipage}[t]{3in}
1367              {U-Wind at 10 meters}
1368             \end{minipage}\\
1369     V10M    & $m/sec$ &    1
1370             &\begin{minipage}[t]{3in}
1371              {V-Wind at 10 meters}
1372             \end{minipage}\\
1373     T10M    & $deg$ &    1
1374             &\begin{minipage}[t]{3in}
1375              {Temperature at 10 meters}
1376             \end{minipage}\\
1377     Q10M    & $g/kg$ &    1
1378             &\begin{minipage}[t]{3in}
1379              {Specific Humidity at 10 meters}
1380             \end{minipage}\\
1381     DTRAIN  & $kg/m^2$ &    Nrphys
1382             &\begin{minipage}[t]{3in}
1383              {Detrainment Cloud Mass Flux}
1384             \end{minipage}\\
1385     QFILL   & $g/kg/day$ &    Nrphys
1386             &\begin{minipage}[t]{3in}
1387              {Filling of negative specific humidity}
1388             \end{minipage}\\
1389    \end{tabular}
1390    \vspace{1.5in}
1391    \vfill
1392    
1393    \newpage
1394    \vspace*{\fill}
1395    \begin{tabular}{llll}
1396    \hline\hline
1397     NAME & UNITS & LEVELS & DESCRIPTION \\
1398    \hline
1399    
1400    &\\
1401     DTCONV   & $deg/sec$ & Nr
1402             &\begin{minipage}[t]{3in}
1403              {Temp Change due to Convection}
1404             \end{minipage}\\
1405     DQCONV   & $g/kg/sec$ & Nr
1406             &\begin{minipage}[t]{3in}
1407              {Specific Humidity Change due to Convection}
1408             \end{minipage}\\
1409     RELHUM   & $percent$ & Nr
1410             &\begin{minipage}[t]{3in}
1411              {Relative Humidity}
1412             \end{minipage}\\
1413     PRECLS   & $g/m^2/sec$ & 1
1414             &\begin{minipage}[t]{3in}
1415              {Large Scale Precipitation}
1416             \end{minipage}\\
1417     ENPREC   & $J/g$ & 1
1418             &\begin{minipage}[t]{3in}
1419              {Energy of Precipitation (snow, rain Temp)}
1420             \end{minipage}\\
1421    \end{tabular}
1422    \vspace{1.5in}
1423    \vfill
1424    
1425    \newpage
1426    
1427    \subsubsection{Fizhi Diagnostic Description}
1428    
1429    In this section we list and describe the diagnostic quantities available within the
1430    GCM.  The diagnostics are listed in the order that they appear in the
1431    Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}.
1432    In all cases, each diagnostic as currently archived on the output datasets
1433    is time-averaged over its diagnostic output frequency:
1434    
1435    \[
1436    {\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t)
1437    \]
1438    where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the
1439    output frequency of the diagnostic, and $\Delta t$ is
1440    the timestep over which the diagnostic is updated.  
1441    
1442    { \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) }
1443    
1444    The zonal wind stress is the turbulent flux of zonal momentum from
1445    the surface.
1446    \[
1447    {\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1448    \]
1449    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1450    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1451    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is
1452    the zonal wind in the lowest model layer.
1453    \\
1454    
1455    
1456    { \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) }
1457    
1458    The meridional wind stress is the turbulent flux of meridional momentum from
1459    the surface.
1460    \[
1461    {\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u
1462    \]
1463    where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface
1464    drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum
1465    (see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is
1466    the meridional wind in the lowest model layer.
1467    \\
1468    
1469    { \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) }
1470    
1471    The turbulent flux of sensible heat from the surface to the atmosphere is a function of the
1472    gradient of virtual potential temperature and the eddy exchange coefficient:
1473    \[
1474    {\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
1475    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1476    \]
1477    where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific
1478    heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1479    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1480    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1481    for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature
1482    at the surface and at the bottom model level.
1483    \\
1484    
1485    
1486    { \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) }
1487    
1488    The turbulent flux of latent heat from the surface to the atmosphere is a function of the
1489    gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient:
1490    \[
1491    {\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
1492    \hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t
1493    \]
1494    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
1495    the potential evapotranspiration actually evaporated, L is the latent
1496    heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the
1497    magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient
1498    for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient
1499    for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific
1500    humidity at the surface and at the bottom model level, respectively.
1501    \\
1502    
1503    { \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) }
1504    
1505    Over sea ice there is an additional source of energy at the surface due to the heat
1506    conduction from the relatively warm ocean through the sea ice. The heat conduction
1507    through sea ice represents an additional energy source term for the ground temperature equation.
1508    
1509    \[
1510    {\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g)
1511    \]
1512    
1513    where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to
1514    be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and
1515    $T_g$ is the temperature of the sea ice.
1516    
1517    NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
1518    \\
1519    
1520    
1521    { \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)}
1522    
1523    \begin{eqnarray*}
1524    {\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
1525                 & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow
1526    \end{eqnarray*}
1527    \\
1528    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1529    $F_{LW}^\uparrow$ is
1530    the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux.
1531    \\
1532    
1533    { \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)}
1534    
1535    \begin{eqnarray*}
1536    {\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
1537                 & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow
1538    \end{eqnarray*}
1539    \\
1540    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
1541    $F_{SW}^\downarrow$ is
1542    the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux.
1543    \\
1544    
1545    
1546    \noindent
1547    { \underline {RI} Richardson Number} ($dimensionless$)
1548    
1549    \noindent
1550    The non-dimensional stability indicator is the ratio of the buoyancy to the shear:
1551    \[
1552    {\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1553     =  {  {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } }
1554    \]
1555    \\
1556    where we used the hydrostatic equation:
1557    \[
1558    {\pp{\Phi}{P^ \kappa}} = c_p \theta_v
1559    \]
1560    Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$)
1561    indicate dominantly unstable shear, and large positive values indicate dominantly stable
1562    stratification.
1563    \\
1564    
1565    \noindent
1566    { \underline {CT}  Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) }
1567    
1568    \noindent
1569    The surface exchange coefficient is obtained from the similarity functions for the stability
1570     dependant flux profile relationships:
1571    \[
1572    {\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} =
1573    -{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} =
1574    { k \over { (\psi_{h} + \psi_{g}) } }
1575    \]
1576    where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the
1577    viscous sublayer non-dimensional temperature or moisture change:
1578    \[
1579    \psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and
1580    \hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} }
1581    (h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}
1582    \]
1583    and:
1584    $h_{0} = 30z_{0}$ with a maximum value over land of 0.01
1585    
1586    \noindent
1587    $\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of
1588    the temperature and moisture gradients, specified differently for stable and unstable
1589    layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1590    non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular
1591    viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity
1592    (see diagnostic number 67), and the subscript ref refers to a reference value.
1593    \\
1594    
1595    \noindent
1596    { \underline {CU}  Surface Exchange Coefficient for Momentum ($dimensionless$) }
1597    
1598    \noindent
1599    The surface exchange coefficient is obtained from the similarity functions for the stability
1600     dependant flux profile relationships:
1601    \[
1602    {\bf CU} = {u_* \over W_s} = { k \over \psi_{m} }
1603    \]
1604    where $\psi_m$ is the surface layer non-dimensional wind shear:
1605    \[
1606    \psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta}
1607    \]
1608    \noindent
1609    $\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of
1610    the temperature and moisture gradients, specified differently for stable and unstable layers
1611    according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the
1612    non-dimensional stability parameter, $u_*$ is the surface stress velocity
1613    (see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind.
1614    \\
1615    
1616    \noindent
1617    { \underline {ET}  Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) }
1618    
1619    \noindent
1620    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or
1621    moisture flux for the atmosphere above the surface layer can be expressed as a turbulent
1622    diffusion coefficient $K_h$ times the negative of the gradient of potential temperature
1623    or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$
1624    takes the form:
1625    \[
1626    {\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} }
1627     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
1628    \\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1629    \]
1630    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1631    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1632    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1633    depth,
1634    $S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1635    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1636    dimensionless buoyancy and wind shear
1637    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1638    are functions of the Richardson number.
1639    
1640    \noindent
1641    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1642    see Helfand and Labraga, 1988.
1643    
1644    \noindent
1645    In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture,
1646    in units of $m/sec$, given by:
1647    \[
1648    {\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s
1649    \]
1650    \noindent
1651    where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the
1652    surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface
1653    friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient,
1654    and $W_s$ is the magnitude of the surface layer wind.
1655    \\
1656    
1657    \noindent
1658    { \underline {EU}  Diffusivity Coefficient for Momentum ($m^2/sec$) }
1659    
1660    \noindent  
1661    In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat
1662    momentum flux for the atmosphere above the surface layer can be expressed as a turbulent
1663    diffusion coefficient $K_m$ times the negative of the gradient of the u-wind.
1664    In the Helfand and Labraga (1988) adaptation of this closure, $K_m$
1665    takes the form:
1666    \[
1667    {\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} }
1668     = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
1669    \\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.
1670    \]
1671    \noindent
1672    where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
1673    energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model,
1674    which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer
1675    depth,
1676    $S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and
1677    wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium
1678    dimensionless buoyancy and wind shear
1679    parameters.   Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$,
1680    are functions of the Richardson number.
1681    
1682    \noindent
1683    For the detailed equations and derivations of the modified level 2.5 closure scheme,
1684    see Helfand and Labraga, 1988.
1685    
1686    \noindent
1687    In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum,
1688    in units of $m/sec$, given by:
1689    \[
1690    {\bf EU_{Nrphys}} = C_u * u_* = C_D W_s
1691    \]
1692    \noindent
1693    where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer
1694    similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity
1695    (see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the
1696    magnitude of the surface layer wind.
1697    \\
1698    
1699    \noindent
1700    { \underline {TURBU}  Zonal U-Momentum changes due to Turbulence ($m/sec/day$) }
1701    
1702    \noindent
1703    The tendency of U-Momentum due to turbulence is written:
1704    \[
1705    {\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
1706     = {\pp{}{z} }{(K_m \pp{u}{z})}
1707    \]
1708    
1709    \noindent
1710    The Helfand and Labraga level 2.5 scheme models the turbulent
1711    flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion
1712    equation.
1713    
1714    \noindent
1715    { \underline {TURBV}  Meridional V-Momentum changes due to Turbulence ($m/sec/day$) }
1716    
1717    \noindent
1718    The tendency of V-Momentum due to turbulence is written:
1719    \[
1720    {\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
1721     = {\pp{}{z} }{(K_m \pp{v}{z})}
1722    \]
1723    
1724    \noindent
1725    The Helfand and Labraga level 2.5 scheme models the turbulent
1726    flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion
1727    equation.
1728    \\
1729    
1730    \noindent
1731    { \underline {TURBT}  Temperature changes due to Turbulence ($deg/day$) }
1732    
1733    \noindent
1734    The tendency of temperature due to turbulence is written:
1735    \[
1736    {\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
1737    P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
1738     = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}
1739    \]
1740    
1741    \noindent
1742    The Helfand and Labraga level 2.5 scheme models the turbulent
1743    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1744    equation.
1745    \\
1746    
1747    \noindent
1748    { \underline {TURBQ}  Specific Humidity changes due to Turbulence ($g/kg/day$) }
1749    
1750    \noindent
1751    The tendency of specific humidity due to turbulence is written:
1752    \[
1753    {\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
1754     = {\pp{}{z} }{(K_h \pp{q}{z})}
1755    \]
1756    
1757    \noindent
1758    The Helfand and Labraga level 2.5 scheme models the turbulent
1759    flux of temperature in terms of $K_h$, and the equation has the form of a diffusion
1760    equation.
1761    \\
1762    
1763    \noindent
1764    { \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) }
1765    
1766    \noindent
1767    \[
1768    {\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}
1769    \]
1770    where:
1771    \[
1772    \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i
1773    \hspace{.4cm} and
1774    \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q)
1775    \]
1776    and
1777    \[
1778    \Gamma_s = g \eta \pp{s}{p}
1779    \]
1780    
1781    \noindent
1782    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1783    precipitation processes, or supersaturation rain.
1784    The summation refers to contributions from each cloud type called by RAS.  
1785    The dry static energy is given
1786    as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1787    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1788    the description of the convective parameterization.  The fractional adjustment, or relaxation
1789    parameter, for each cloud type is given as $\alpha$, while
1790    $R$ is the rain re-evaporation adjustment.
1791    \\
1792    
1793    \noindent
1794    { \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) }
1795    
1796    \noindent
1797    \[
1798    {\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}
1799    \]
1800    where:
1801    \[
1802    \left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i
1803    \hspace{.4cm} and
1804    \hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)
1805    \]
1806    and
1807    \[
1808    \Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}
1809    \]
1810    \noindent
1811    The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale
1812    precipitation processes, or supersaturation rain.
1813    The summation refers to contributions from each cloud type called by RAS.  
1814    The dry static energy is given as $s$,
1815    the moist static energy is given as $h$,
1816    the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is
1817    given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc},
1818    the description of the convective parameterization.  The fractional adjustment, or relaxation
1819    parameter, for each cloud type is given as $\alpha$, while
1820    $R$ is the rain re-evaporation adjustment.
1821    \\
1822    
1823    \noindent
1824    { \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) }
1825    
1826    \noindent
1827    The net longwave heating rate is calculated as the vertical divergence of the
1828    net terrestrial radiative fluxes.
1829    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
1830    longwave routine.
1831    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
1832    For a given cloud fraction,
1833    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
1834    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
1835    for the upward and downward radiative fluxes.
1836    (see Section \ref{sec:fizhi:radcloud}).
1837    The cloudy-sky flux is then obtained as:
1838      
1839    \noindent
1840    \[
1841    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
1842    \]
1843    
1844    \noindent
1845    Finally, the net longwave heating rate is calculated as the vertical divergence of the
1846    net terrestrial radiative fluxes:
1847    \[
1848    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} ,
1849    \]
1850    or
1851    \[
1852    {\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} .
1853    \]
1854    
1855    \noindent
1856    where $g$ is the accelation due to gravity,
1857    $c_p$ is the heat capacity of air at constant pressure,
1858    and
1859    \[
1860    F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow
1861    \]
1862    \\
1863    
1864    
1865    \noindent
1866    { \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) }
1867    
1868    \noindent
1869    The net Shortwave heating rate is calculated as the vertical divergence of the
1870    net solar radiative fluxes.
1871    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
1872    For the clear-sky case, the shortwave fluxes and heating rates are computed with
1873    both CLMO (maximum overlap cloud fraction) and
1874    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
1875    The shortwave routine is then called a second time, for the cloudy-sky case, with the
1876    true time-averaged cloud fractions CLMO
1877    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
1878    input at the top of the atmosphere.
1879    
1880    \noindent
1881    The heating rate due to Shortwave Radiation under cloudy skies is defined as:
1882    \[
1883    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},
1884    \]
1885    or
1886    \[
1887    {\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .
1888    \]
1889    
1890    \noindent
1891    where $g$ is the accelation due to gravity,
1892    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
1893    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
1894    \[
1895    F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow
1896    \]
1897    \\
1898    
1899    \noindent
1900    { \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) }
1901    
1902    \noindent
1903    For a change in specific humidity due to moist processes, $\Delta q_{moist}$,
1904    the vertical integral or total precipitable amount is given by:  
1905    \[
1906    {\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
1907    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp
1908    \]
1909    \\
1910    
1911    \noindent
1912    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1913    time step, scaled to $mm/day$.
1914    \\
1915    
1916    \noindent
1917    { \underline {PRECON} Convective Precipition ($mm/day$) }
1918    
1919    \noindent
1920    For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$,
1921    the vertical integral or total precipitable amount is given by:  
1922    \[
1923    {\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
1924    {dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp
1925    \]
1926    \\
1927    
1928    \noindent
1929    A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes
1930    time step, scaled to $mm/day$.
1931    \\
1932    
1933    \noindent
1934    { \underline {TUFLUX}  Turbulent Flux of U-Momentum ($Newton/m^2$) }
1935    
1936    \noindent
1937    The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1938     \hspace{.2cm} only$ from the eddy coefficient for momentum:
1939    
1940    \[
1941    {\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =  
1942    {\rho } {(- K_m \pp{U}{z})}
1943    \]
1944    
1945    \noindent
1946    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1947    \\
1948    
1949    \noindent
1950    { \underline {TVFLUX}  Turbulent Flux of V-Momentum ($Newton/m^2$) }
1951    
1952    \noindent
1953    The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes
1954    \hspace{.2cm} only$ from the eddy coefficient for momentum:
1955    
1956    \[
1957    {\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
1958     {\rho } {(- K_m \pp{V}{z})}
1959    \]
1960    
1961    \noindent
1962    where $\rho$ is the air density, and $K_m$ is the eddy coefficient.
1963    \\
1964    
1965    
1966    \noindent
1967    { \underline {TTFLUX}  Turbulent Flux of Sensible Heat ($Watts/m^2$) }
1968    
1969    \noindent
1970    The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes
1971    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1972    
1973    \noindent
1974    \[
1975    {\bf TTFLUX} = c_p {\rho }  
1976    P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
1977     = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}
1978    \]
1979    
1980    \noindent
1981    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
1982    \\
1983    
1984    
1985    \noindent
1986    { \underline {TQFLUX}  Turbulent Flux of Latent Heat ($Watts/m^2$) }
1987    
1988    \noindent
1989    The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes
1990    \hspace{.2cm} only$ from the eddy coefficient for heat and moisture:
1991    
1992    \noindent
1993    \[
1994    {\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
1995    {L {\rho }(- K_h \pp{q}{z})}
1996    \]
1997    
1998    \noindent
1999    where $\rho$ is the air density, and $K_h$ is the eddy coefficient.
2000    \\
2001    
2002    
2003    \noindent
2004    { \underline {CN}  Neutral Drag Coefficient ($dimensionless$) }
2005    
2006    \noindent
2007    The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:
2008    \[
2009    {\bf CN} = { k \over { \ln({h \over {z_0}})} }
2010    \]
2011    
2012    \noindent
2013    where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and
2014    $z_0$ is the surface roughness.
2015    
2016    \noindent
2017    NOTE: CN is not available through model version 5.3, but is available in subsequent
2018    versions.
2019    \\
2020    
2021    \noindent
2022    { \underline {WINDS}  Surface Wind Speed ($meter/sec$) }
2023    
2024    \noindent
2025    The surface wind speed is calculated for the last internal turbulence time step:
2026    \[
2027    {\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}
2028    \]
2029    
2030    \noindent
2031    where the subscript $Nrphys$ refers to the lowest model level.
2032    \\
2033    
2034    \noindent
2035    { \underline {DTSRF}  Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) }
2036    
2037    \noindent
2038    The air/surface virtual temperature difference measures the stability of the surface layer:
2039    \[
2040    {\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}
2041    \]
2042    \noindent
2043    where
2044    \[
2045    \theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
2046    and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2047    \]
2048    
2049    \noindent
2050    $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2051    $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature
2052    and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$
2053    refers to the surface.
2054    \\
2055    
2056    
2057    \noindent
2058    { \underline {TG}  Ground Temperature ($deg \hspace{.1cm} K$) }
2059    
2060    \noindent
2061    The ground temperature equation is solved as part of the turbulence package
2062    using a backward implicit time differencing scheme:
2063    \[
2064    {\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
2065    C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE
2066    \]
2067    
2068    \noindent
2069    where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the
2070    net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through
2071    sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat
2072    flux, and $C_g$ is the total heat capacity of the ground.
2073    $C_g$ is obtained by solving a heat diffusion equation
2074    for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by:
2075    \[
2076    C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
2077    { 86400. \over {2 \pi} } } \, \, .
2078    \]
2079    \noindent
2080    Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}}
2081    {cm \over {^oK}}$,
2082    the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided
2083    by $2 \pi$ $radians/
2084    day$, and the expression for $C_s$, the heat capacity per unit volume at the surface,
2085    is a function of the ground wetness, $W$.
2086    \\
2087    
2088    \noindent
2089    { \underline {TS}  Surface Temperature ($deg \hspace{.1cm} K$) }
2090    
2091    \noindent
2092    The surface temperature estimate is made by assuming that the model's lowest
2093    layer is well-mixed, and therefore that $\theta$ is constant in that layer.
2094    The surface temperature is therefore:
2095    \[
2096    {\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}
2097    \]
2098    \\
2099    
2100    \noindent
2101    { \underline {DTG}  Surface Temperature Adjustment ($deg \hspace{.1cm} K$) }
2102    
2103    \noindent
2104    The change in surface temperature from one turbulence time step to the next, solved
2105    using the Ground Temperature Equation (see diagnostic number 30) is calculated:
2106    \[
2107    {\bf DTG} = {T_g}^{n} - {T_g}^{n-1}
2108    \]
2109    
2110    \noindent
2111    where superscript $n$ refers to the new, updated time level, and the superscript $n-1$
2112    refers to the value at the previous turbulence time level.
2113    \\
2114    
2115    \noindent
2116    { \underline {QG}  Ground Specific Humidity ($g/kg$) }
2117    
2118    \noindent
2119    The ground specific humidity is obtained by interpolating between the specific
2120    humidity at the lowest model level and the specific humidity of a saturated ground.
2121    The interpolation is performed using the potential evapotranspiration function:
2122    \[
2123    {\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})
2124    \]
2125    
2126    \noindent
2127    where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans),
2128    and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface
2129    pressure.
2130    \\
2131    
2132    \noindent
2133    { \underline {QS}  Saturation Surface Specific Humidity ($g/kg$) }
2134    
2135    \noindent
2136    The surface saturation specific humidity is the saturation specific humidity at
2137    the ground temprature and surface pressure:
2138    \[
2139    {\bf QS} = q^*(T_g,P_s)
2140    \]
2141    \\
2142    
2143    \noindent
2144    { \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave
2145     radiation subroutine (deg)}
2146    \[
2147    {\bf TGRLW}  = T_g(\lambda , \phi ,n)
2148    \]
2149    \noindent
2150    where $T_g$ is the model ground temperature at the current time step $n$.
2151    \\
2152    
2153    
2154    \noindent
2155    { \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) }
2156    \[
2157    {\bf ST4} = \sigma T^4
2158    \]
2159    \noindent
2160    where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature.
2161    \\
2162    
2163    \noindent
2164    { \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2165    \[
2166    {\bf OLR}  =  F_{LW,top}^{NET}
2167    \]
2168    \noindent
2169    where top indicates the top of the first model layer.
2170    In the GCM, $p_{top}$ = 0.0 mb.
2171    \\
2172    
2173    
2174    \noindent
2175    { \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) }
2176    \[
2177    {\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}
2178    \]
2179    \noindent
2180    where top indicates the top of the first model layer.
2181    In the GCM, $p_{top}$ = 0.0 mb.
2182    \\
2183    
2184    \noindent
2185    { \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) }
2186    
2187    \noindent
2188    \begin{eqnarray*}
2189    {\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
2190                 & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow
2191    \end{eqnarray*}
2192    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2193    $F(clearsky)_{LW}^\uparrow$ is
2194    the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux.
2195    \\
2196    
2197    \noindent
2198    { \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) }
2199    
2200    \noindent
2201    The net longwave heating rate is calculated as the vertical divergence of the
2202    net terrestrial radiative fluxes.
2203    Both the clear-sky and cloudy-sky longwave fluxes are computed within the
2204    longwave routine.
2205    The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first.
2206    For a given cloud fraction,
2207    the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$
2208    to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$,
2209    for the upward and downward radiative fluxes.
2210    (see Section \ref{sec:fizhi:radcloud}).
2211    The cloudy-sky flux is then obtained as:
2212      
2213    \noindent
2214    \[
2215    F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},
2216    \]
2217    
2218    \noindent
2219    Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the
2220    vertical divergence of the
2221    clear-sky longwave radiative flux:
2222    \[
2223    \pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} ,
2224    \]
2225    or
2226    \[
2227    {\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} .
2228    \]
2229    
2230    \noindent
2231    where $g$ is the accelation due to gravity,
2232    $c_p$ is the heat capacity of air at constant pressure,
2233    and
2234    \[
2235    F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow
2236    \]
2237    \\
2238    
2239    
2240    \noindent
2241    { \underline {TLW} Instantaneous temperature used as input to the Longwave
2242     radiation subroutine (deg)}
2243    \[
2244    {\bf TLW}  = T(\lambda , \phi ,level, n)
2245    \]
2246    \noindent
2247    where $T$ is the model temperature at the current time step $n$.
2248    \\
2249    
2250    
2251    \noindent
2252    { \underline {SHLW} Instantaneous specific humidity used as input to
2253     the Longwave radiation subroutine (kg/kg)}
2254    \[
2255    {\bf SHLW}  = q(\lambda , \phi , level , n)
2256    \]
2257    \noindent
2258    where $q$ is the model specific humidity at the current time step $n$.
2259    \\
2260    
2261    
2262    \noindent
2263    { \underline {OZLW} Instantaneous ozone used as input to
2264     the Longwave radiation subroutine (kg/kg)}
2265    \[
2266    {\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)
2267    \]
2268    \noindent
2269    where $\rm OZ$ is the interpolated ozone data set from the climatological monthly
2270    mean zonally averaged ozone data set.
2271    \\
2272    
2273    
2274    \noindent
2275    { \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) }
2276    
2277    \noindent
2278    {\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2279    Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm.  These are
2280    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2281    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2282    \[
2283    {\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )
2284    \]
2285    \\
2286    
2287    
2288    { \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) }
2289    
2290    {\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed
2291    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave
2292    Radiation packages.
2293    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2294    \[
2295    {\bf CLDTOT} = F_{RAS} + F_{LS}
2296    \]
2297    \\
2298    where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the
2299    time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes.
2300    \\
2301    
2302    
2303    \noindent
2304    { \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) }
2305    
2306    \noindent
2307    {\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
2308    Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm.  These are
2309    convective clouds whose radiative characteristics are assumed to be correlated in the vertical.
2310    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2311    \[
2312    {\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )
2313    \]
2314    \\
2315    
2316    \noindent
2317    { \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) }
2318    
2319    \noindent
2320    {\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed
2321    Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave
2322    Radiation algorithm.  These are
2323    convective and large-scale clouds whose radiative characteristics are not
2324    assumed to be correlated in the vertical.
2325    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2326    \[
2327    {\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )
2328    \]
2329    \\
2330    
2331    \noindent
2332    { \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) }
2333    \[
2334    {\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z
2335    \]
2336    \noindent
2337    where $S_0$, is the extra-terrestial solar contant,
2338    $R_a$ is the earth-sun distance in Astronomical Units,
2339    and $cos \phi_z$ is the cosine of the zenith angle.
2340    It should be noted that {\bf RADSWT}, as well as
2341    {\bf OSR} and {\bf OSRCLR},
2342    are calculated at the top of the atmosphere (p=0 mb).  However, the
2343    {\bf OLR} and {\bf OLRCLR} diagnostics are currently
2344    calculated at $p= p_{top}$ (0.0 mb for the GCM).
2345    \\
2346      
2347    \noindent
2348    { \underline {EVAP}  Surface Evaporation ($mm/day$) }
2349    
2350    \noindent
2351    The surface evaporation is a function of the gradient of moisture, the potential
2352    evapotranspiration fraction and the eddy exchange coefficient:
2353    \[
2354    {\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})
2355    \]
2356    where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of
2357    the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the
2358    turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and
2359    $q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic
2360    number 34) and at the bottom model level, respectively.
2361    \\
2362    
2363    \noindent
2364    { \underline {DUDT} Total Zonal U-Wind Tendency  ($m/sec/day$) }
2365    
2366    \noindent
2367    {\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic,
2368    and Analysis forcing.
2369    \[
2370    {\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2371    \]
2372    \\
2373    
2374    \noindent
2375    { \underline {DVDT} Total Zonal V-Wind Tendency  ($m/sec/day$) }
2376    
2377    \noindent
2378    {\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic,
2379    and Analysis forcing.
2380    \[
2381    {\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2382    \]
2383    \\
2384    
2385    \noindent
2386    { \underline {DTDT} Total Temperature Tendency  ($deg/day$) }
2387    
2388    \noindent
2389    {\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
2390    and Analysis forcing.
2391    \begin{eqnarray*}
2392    {\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2393               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2394    \end{eqnarray*}
2395    \\
2396    
2397    \noindent
2398    { \underline {DQDT} Total Specific Humidity Tendency  ($g/kg/day$) }
2399    
2400    \noindent
2401    {\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic,
2402    and Analysis forcing.
2403    \[
2404    {\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
2405    + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2406    \]
2407    \\
2408      
2409    \noindent
2410    { \underline {USTAR}  Surface-Stress Velocity ($m/sec$) }
2411    
2412    \noindent
2413    The surface stress velocity, or the friction velocity, is the wind speed at
2414    the surface layer top impeded by the surface drag:
2415    \[
2416    {\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
2417    C_u = {k \over {\psi_m} }
2418    \]
2419    
2420    \noindent
2421    $C_u$ is the non-dimensional surface drag coefficient (see diagnostic
2422    number 10), and $W_s$ is the surface wind speed (see diagnostic number 28).
2423    
2424    \noindent
2425    { \underline {Z0}  Surface Roughness Length ($m$) }
2426    
2427    \noindent
2428    Over the land surface, the surface roughness length is interpolated to the local
2429    time from the monthly mean data of Dorman and Sellers (1989). Over the ocean,
2430    the roughness length is a function of the surface-stress velocity, $u_*$.
2431    \[
2432    {\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}}
2433    \]
2434    
2435    \noindent
2436    where the constants are chosen to interpolate between the reciprocal relation of
2437    Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981)
2438    for moderate to large winds.
2439    \\
2440    
2441    \noindent
2442    { \underline {FRQTRB}  Frequency of Turbulence ($0-1$) }
2443    
2444    \noindent
2445    The fraction of time when turbulence is present is defined as the fraction of
2446    time when the turbulent kinetic energy exceeds some minimum value, defined here
2447    to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is
2448    incremented. The fraction over the averaging interval is reported.
2449    \\
2450    
2451    \noindent
2452    { \underline {PBL}  Planetary Boundary Layer Depth ($mb$) }
2453    
2454    \noindent
2455    The depth of the PBL is defined by the turbulence parameterization to be the
2456    depth at which the turbulent kinetic energy reduces to ten percent of its surface
2457    value.
2458    
2459    \[
2460    {\bf PBL} = P_{PBL} - P_{surface}
2461    \]
2462    
2463    \noindent
2464    where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy
2465    reaches one tenth of its surface value, and $P_s$ is the surface pressure.
2466    \\
2467    
2468    \noindent
2469    { \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) }
2470    
2471    \noindent
2472    The net Shortwave heating rate is calculated as the vertical divergence of the
2473    net solar radiative fluxes.
2474    The clear-sky and cloudy-sky shortwave fluxes are calculated separately.
2475    For the clear-sky case, the shortwave fluxes and heating rates are computed with
2476    both CLMO (maximum overlap cloud fraction) and
2477    CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}).
2478    The shortwave routine is then called a second time, for the cloudy-sky case, with the
2479    true time-averaged cloud fractions CLMO
2480    and CLRO being used.  In all cases, a normalized incident shortwave flux is used as
2481    input at the top of the atmosphere.
2482    
2483    \noindent
2484    The heating rate due to Shortwave Radiation under clear skies is defined as:
2485    \[
2486    \pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},
2487    \]
2488    or
2489    \[
2490    {\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .
2491    \]
2492    
2493    \noindent
2494    where $g$ is the accelation due to gravity,
2495    $c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident
2496    shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and
2497    \[
2498    F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow
2499    \]
2500    \\
2501    
2502    \noindent
2503    { \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) }
2504    \[
2505    {\bf OSR}  =  F_{SW,top}^{NET}
2506    \]                                                                                      
2507    \noindent
2508    where top indicates the top of the first model layer used in the shortwave radiation
2509    routine.
2510    In the GCM, $p_{SW_{top}}$ = 0 mb.
2511    \\
2512    
2513    \noindent
2514    { \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) }
2515    \[
2516    {\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}
2517    \]
2518    \noindent
2519    where top indicates the top of the first model layer used in the shortwave radiation
2520    routine.
2521    In the GCM, $p_{SW_{top}}$ = 0 mb.
2522    \\
2523    
2524    
2525    \noindent
2526    { \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) }
2527    
2528    \noindent
2529    The amount of cloud mass moved per RAS timestep from all convective clouds is written:
2530    \[
2531    {\bf CLDMAS} = \eta m_B
2532    \]
2533    where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is
2534    the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the
2535    description of the convective parameterization.
2536    \\
2537    
2538    
2539    
2540    \noindent
2541    { \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) }
2542    
2543    \noindent
2544    The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over
2545    the {\bf NUAVE} output frequency.  This is contrasted to the instantaneous
2546    Zonal U-Wind which is archived on the Prognostic Output data stream.
2547    \[
2548    {\bf UAVE} = u(\lambda, \phi, level , t)
2549    \]
2550    \\
2551    Note, {\bf UAVE} is computed and stored on the staggered C-grid.
2552    \\
2553    
2554    \noindent
2555    { \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) }
2556    
2557    \noindent
2558    The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over
2559    the {\bf NVAVE} output frequency.  This is contrasted to the instantaneous
2560    Meridional V-Wind which is archived on the Prognostic Output data stream.
2561    \[
2562    {\bf VAVE} = v(\lambda, \phi, level , t)
2563    \]
2564    \\
2565    Note, {\bf VAVE} is computed and stored on the staggered C-grid.
2566    \\
2567    
2568    \noindent
2569    { \underline {TAVE} Time-Averaged Temperature ($Kelvin$) }
2570    
2571    \noindent
2572    The diagnostic {\bf TAVE} is simply the time-averaged Temperature over
2573    the {\bf NTAVE} output frequency.  This is contrasted to the instantaneous
2574    Temperature which is archived on the Prognostic Output data stream.
2575    \[
2576    {\bf TAVE} = T(\lambda, \phi, level , t)
2577    \]
2578    \\
2579    
2580    \noindent
2581    { \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) }
2582    
2583    \noindent
2584    The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over
2585    the {\bf NQAVE} output frequency.  This is contrasted to the instantaneous
2586    Specific Humidity which is archived on the Prognostic Output data stream.
2587    \[
2588    {\bf QAVE} = q(\lambda, \phi, level , t)
2589    \]
2590    \\
2591    
2592    \noindent
2593    { \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) }
2594    
2595    \noindent
2596    The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over
2597    the {\bf NPAVE} output frequency.  This is contrasted to the instantaneous
2598    Surface Pressure - PTOP which is archived on the Prognostic Output data stream.
2599    \begin{eqnarray*}
2600    {\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
2601               & =  & p_s(\lambda, \phi, level , t) - p_T
2602    \end{eqnarray*}
2603    \\
2604    
2605    
2606    \noindent
2607    { \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ }
2608    
2609    \noindent
2610    The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy
2611    produced by the GCM Turbulence parameterization over
2612    the {\bf NQQAVE} output frequency.  This is contrasted to the instantaneous
2613    Turbulent Kinetic Energy which is archived on the Prognostic Output data stream.
2614    \[
2615    {\bf QQAVE} = qq(\lambda, \phi, level , t)
2616    \]
2617    \\
2618    Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid.
2619    \\
2620    
2621    \noindent
2622    { \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) }
2623    
2624    \noindent
2625    \begin{eqnarray*}
2626    {\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
2627                 & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow
2628    \end{eqnarray*}
2629    \noindent
2630    \\
2631    where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$.
2632    $F(clearsky){SW}^\downarrow$ is
2633    the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is
2634    the upward clearsky Shortwave flux.
2635    \\
2636    
2637    \noindent
2638    { \underline {DIABU} Total Diabatic Zonal U-Wind Tendency  ($m/sec/day$) }
2639    
2640    \noindent
2641    {\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes
2642    and the Analysis forcing.
2643    \[
2644    {\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}
2645    \]
2646    \\
2647    
2648    \noindent
2649    { \underline {DIABV} Total Diabatic Meridional V-Wind Tendency  ($m/sec/day$) }
2650    
2651    \noindent
2652    {\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes
2653    and the Analysis forcing.
2654    \[
2655    {\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}
2656    \]
2657    \\
2658    
2659    \noindent
2660    { \underline {DIABT} Total Diabatic Temperature Tendency  ($deg/day$) }
2661    
2662    \noindent
2663    {\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes
2664    and the Analysis forcing.
2665    \begin{eqnarray*}
2666    {\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2667               & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis}
2668    \end{eqnarray*}
2669    \\
2670    If we define the time-tendency of Temperature due to Diabatic processes as
2671    \begin{eqnarray*}
2672    \pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
2673                         & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}
2674    \end{eqnarray*}
2675    then, since there are no surface pressure changes due to Diabatic processes, we may write
2676    \[
2677    \pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic}
2678    \]
2679    where $\theta = T/p^\kappa$.  Thus, {\bf DIABT} may be written as
2680    \[
2681    {\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)
2682    \]
2683    \\
2684    
2685    \noindent
2686    { \underline {DIABQ} Total Diabatic Specific Humidity Tendency  ($g/kg/day$) }
2687    
2688    \noindent
2689    {\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes
2690    and the Analysis forcing.
2691    \[
2692    {\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}
2693    \]
2694    If we define the time-tendency of Specific Humidity due to Diabatic processes as
2695    \[
2696    \pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}
2697    \]
2698    then, since there are no surface pressure changes due to Diabatic processes, we may write
2699    \[
2700    \pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic}
2701    \]
2702    Thus, {\bf DIABQ} may be written as
2703    \[
2704    {\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)
2705    \]
2706    \\
2707    
2708    \noindent
2709    { \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2710    
2711    \noindent
2712    The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating
2713    $u q$ over the depth of the atmosphere at each model timestep,
2714    and dividing by the total mass of the column.
2715    \[
2716    {\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }
2717    \]
2718    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2719    \[
2720    {\bf VINTUQ} = { \int_0^1 u q dp  }
2721    \]
2722    \\
2723    
2724    
2725    \noindent
2726    { \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) }
2727    
2728    \noindent
2729    The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating
2730    $v q$ over the depth of the atmosphere at each model timestep,
2731    and dividing by the total mass of the column.
2732    \[
2733    {\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }
2734    \]
2735    Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have
2736    \[
2737    {\bf VINTVQ} = { \int_0^1 v q dp  }
2738    \]
2739    \\
2740    
2741    
2742    \noindent
2743    { \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2744    
2745    \noindent
2746    The vertically integrated heat flux due to the zonal u-wind is obtained by integrating
2747    $u T$ over the depth of the atmosphere at each model timestep,
2748    and dividing by the total mass of the column.
2749    \[
2750    {\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }
2751    \]
2752    Or,
2753    \[
2754    {\bf VINTUT} = { \int_0^1 u T dp  }
2755    \]
2756    \\
2757    
2758    \noindent
2759    { \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) }
2760    
2761    \noindent
2762    The vertically integrated heat flux due to the meridional v-wind is obtained by integrating
2763    $v T$ over the depth of the atmosphere at each model timestep,
2764    and dividing by the total mass of the column.
2765    \[
2766    {\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }
2767    \]
2768    Using $\rho \delta z = -{\delta p \over g} $, we have
2769    \[
2770    {\bf VINTVT} = { \int_0^1 v T dp  }
2771    \]
2772    \\
2773    
2774    \noindent
2775    { \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) }
2776    
2777    If we define the
2778    time-averaged random and maximum overlapped cloudiness as CLRO and
2779    CLMO respectively, then the probability of clear sky associated
2780    with random overlapped clouds at any level is (1-CLRO) while the probability of
2781    clear sky associated with maximum overlapped clouds at any level is (1-CLMO).
2782    The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus
2783    the total cloud fraction at each  level may be obtained by
2784    1-(1-CLRO)*(1-CLMO).
2785    
2786    At any given level, we may define the clear line-of-site probability by
2787    appropriately accounting for the maximum and random overlap
2788    cloudiness.  The clear line-of-site probability is defined to be
2789    equal to the product of the clear line-of-site probabilities
2790    associated with random and maximum overlap cloudiness.  The clear
2791    line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds,
2792    from the current pressure $p$
2793    to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$,
2794    is simply 1.0 minus the largest maximum overlap cloud value along  the
2795    line-of-site, ie.
2796    
2797    $$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$
2798    
2799    Thus, even in the time-averaged sense it is assumed that the
2800    maximum overlap clouds are correlated in the vertical.  The clear
2801    line-of-site probability associated with random overlap clouds is
2802    defined to be the product of the clear sky probabilities at each
2803    level along the line-of-site, ie.
2804    
2805    $$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$
2806    
2807    The total cloud fraction at a given level associated with a line-
2808    of-site calculation is given by
2809    
2810    $$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
2811        \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$
2812    
2813    
2814    \noindent
2815    The 2-dimensional net cloud fraction as seen from the top of the
2816    atmosphere is given by
2817    \[
2818    {\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
2819        \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)
2820    \]
2821    \\
2822    For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}.
2823    
2824    
2825    \noindent
2826    { \underline {QINT} Total Precipitable Water ($gm/cm^2$) }
2827    
2828    \noindent
2829    The Total Precipitable Water is defined as the vertical integral of the specific humidity,
2830    given by:
2831    \begin{eqnarray*}
2832    {\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
2833               & = & {\pi \over g} \int_0^1 q dp
2834    \end{eqnarray*}
2835    where we have used the hydrostatic relation
2836    $\rho \delta z = -{\delta p \over g} $.
2837    \\
2838    
2839    
2840    \noindent
2841    { \underline {U2M}  Zonal U-Wind at 2 Meter Depth ($m/sec$) }
2842    
2843    \noindent
2844    The u-wind at the 2-meter depth is determined from the similarity theory:
2845    \[
2846    {\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} =
2847    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl}
2848    \]
2849    
2850    \noindent
2851    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2852    $sl$ refers to the height of the top of the surface layer. If the roughness height
2853    is above two meters, ${\bf U2M}$ is undefined.
2854    \\
2855    
2856    \noindent
2857    { \underline {V2M}  Meridional V-Wind at 2 Meter Depth ($m/sec$) }
2858    
2859    \noindent
2860    The v-wind at the 2-meter depth is a determined from the similarity theory:
2861    \[
2862    {\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} =
2863    { \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl}
2864    \]
2865    
2866    \noindent
2867    where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript
2868    $sl$ refers to the height of the top of the surface layer. If the roughness height
2869    is above two meters, ${\bf V2M}$ is undefined.
2870    \\
2871    
2872    \noindent
2873    { \underline {T2M}  Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) }
2874    
2875    \noindent
2876    The temperature at the 2-meter depth is a determined from the similarity theory:
2877    \[
2878    {\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
2879    P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2880    (\theta_{sl} - \theta_{surf}))
2881    \]
2882    where:
2883    \[
2884    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2885    \]
2886    
2887    \noindent
2888    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2889    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2890    $sl$ refers to the height of the top of the surface layer. If the roughness height
2891    is above two meters, ${\bf T2M}$ is undefined.
2892    \\
2893    
2894    \noindent
2895    { \underline {Q2M}  Specific Humidity at 2 Meter Depth ($g/kg$) }
2896    
2897    \noindent
2898    The specific humidity at the 2-meter depth is determined from the similarity theory:
2899    \[
2900    {\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
2901    P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2902    (q_{sl} - q_{surf}))
2903    \]
2904    where:
2905    \[
2906    q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2907    \]
2908    
2909    \noindent
2910    where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2911    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2912    $sl$ refers to the height of the top of the surface layer. If the roughness height
2913    is above two meters, ${\bf Q2M}$ is undefined.
2914    \\
2915    
2916    \noindent
2917    { \underline {U10M}  Zonal U-Wind at 10 Meter Depth ($m/sec$) }
2918    
2919    \noindent
2920    The u-wind at the 10-meter depth is an interpolation between the surface wind
2921    and the model lowest level wind using the ratio of the non-dimensional wind shear
2922    at the two levels:
2923    \[
2924    {\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} =
2925    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl}
2926    \]
2927    
2928    \noindent
2929    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2930    $sl$ refers to the height of the top of the surface layer.
2931    \\
2932    
2933    \noindent
2934    { \underline {V10M}  Meridional V-Wind at 10 Meter Depth ($m/sec$) }
2935    
2936    \noindent
2937    The v-wind at the 10-meter depth is an interpolation between the surface wind
2938    and the model lowest level wind using the ratio of the non-dimensional wind shear
2939    at the two levels:
2940    \[
2941    {\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} =
2942    { \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl}
2943    \]
2944    
2945    \noindent
2946    where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript
2947    $sl$ refers to the height of the top of the surface layer.
2948    \\
2949    
2950    \noindent
2951    { \underline {T10M}  Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) }
2952    
2953    \noindent
2954    The temperature at the 10-meter depth is an interpolation between the surface potential
2955    temperature and the model lowest level potential temperature using the ratio of the
2956    non-dimensional temperature gradient at the two levels:
2957    \[
2958    {\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
2959    P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2960    (\theta_{sl} - \theta_{surf}))
2961    \]
2962    where:
2963    \[
2964    \theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} }
2965    \]
2966    
2967    \noindent
2968    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2969    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2970    $sl$ refers to the height of the top of the surface layer.
2971    \\
2972    
2973    \noindent
2974    { \underline {Q10M}  Specific Humidity at 10 Meter Depth ($g/kg$) }
2975    
2976    \noindent
2977    The specific humidity at the 10-meter depth is an interpolation between the surface specific
2978    humidity and the model lowest level specific humidity using the ratio of the
2979    non-dimensional temperature gradient at the two levels:
2980    \[
2981    {\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
2982    P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} }
2983    (q_{sl} - q_{surf}))
2984    \]
2985    where:
2986    \[
2987    q_* =  - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} }
2988    \]
2989    
2990    \noindent
2991    where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is
2992    the non-dimensional temperature gradient in the viscous sublayer, and the subscript
2993    $sl$ refers to the height of the top of the surface layer.
2994    \\
2995    
2996    \noindent
2997    { \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) }
2998    
2999    The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:
3000    \[
3001    {\bf DTRAIN} = \eta_{r_D}m_B
3002    \]
3003    \noindent
3004    where $r_D$ is the detrainment level,
3005    $m_B$ is the cloud base mass flux, and $\eta$
3006    is the entrainment, defined in Section \ref{sec:fizhi:mc}.
3007    \\
3008    
3009    \noindent
3010    { \underline {QFILL}  Filling of negative Specific Humidity ($g/kg/day$) }
3011    
3012    \noindent
3013    Due to computational errors associated with the numerical scheme used for
3014    the advection of moisture, negative values of specific humidity may be generated.  The
3015    specific humidity is checked for negative values after every dynamics timestep.  If negative
3016    values have been produced, a filling algorithm is invoked which redistributes moisture from
3017    below.  Diagnostic {\bf QFILL} is equal to the net filling needed
3018    to eliminate negative specific humidity, scaled to a per-day rate:
3019    \[
3020    {\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}
3021    \]
3022    where
3023    \[
3024    q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}
3025    \]
3026    
3027    
3028  \subsection{Key subroutines, parameters and files}  \subsection{Key subroutines, parameters and files}
3029    
3030  \subsection{Dos and donts}  \subsection{Dos and donts}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22