892 |
the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, |
the model's moisture data is used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, |
893 |
a linear interpolation (in pressure) is performed using the data from SAGE and the GCM. |
a linear interpolation (in pressure) is performed using the data from SAGE and the GCM. |
894 |
|
|
895 |
|
|
896 |
|
\subsection{Fizhi Diagnostics} |
897 |
|
|
898 |
|
\subsubsection{Fizhi Diagnostic Menu} |
899 |
|
\label{sec:fizhi-diagnostics:menu} |
900 |
|
|
901 |
|
\begin{tabular}{llll} |
902 |
|
\hline\hline |
903 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
904 |
|
\hline |
905 |
|
|
906 |
|
&\\ |
907 |
|
UFLUX & $Newton/m^2$ & 1 |
908 |
|
&\begin{minipage}[t]{3in} |
909 |
|
{Surface U-Wind Stress on the atmosphere} |
910 |
|
\end{minipage}\\ |
911 |
|
VFLUX & $Newton/m^2$ & 1 |
912 |
|
&\begin{minipage}[t]{3in} |
913 |
|
{Surface V-Wind Stress on the atmosphere} |
914 |
|
\end{minipage}\\ |
915 |
|
HFLUX & $Watts/m^2$ & 1 |
916 |
|
&\begin{minipage}[t]{3in} |
917 |
|
{Surface Flux of Sensible Heat} |
918 |
|
\end{minipage}\\ |
919 |
|
EFLUX & $Watts/m^2$ & 1 |
920 |
|
&\begin{minipage}[t]{3in} |
921 |
|
{Surface Flux of Latent Heat} |
922 |
|
\end{minipage}\\ |
923 |
|
QICE & $Watts/m^2$ & 1 |
924 |
|
&\begin{minipage}[t]{3in} |
925 |
|
{Heat Conduction through Sea-Ice} |
926 |
|
\end{minipage}\\ |
927 |
|
RADLWG & $Watts/m^2$ & 1 |
928 |
|
&\begin{minipage}[t]{3in} |
929 |
|
{Net upward LW flux at the ground} |
930 |
|
\end{minipage}\\ |
931 |
|
RADSWG & $Watts/m^2$ & 1 |
932 |
|
&\begin{minipage}[t]{3in} |
933 |
|
{Net downward SW flux at the ground} |
934 |
|
\end{minipage}\\ |
935 |
|
RI & $dimensionless$ & Nrphys |
936 |
|
&\begin{minipage}[t]{3in} |
937 |
|
{Richardson Number} |
938 |
|
\end{minipage}\\ |
939 |
|
CT & $dimensionless$ & 1 |
940 |
|
&\begin{minipage}[t]{3in} |
941 |
|
{Surface Drag coefficient for T and Q} |
942 |
|
\end{minipage}\\ |
943 |
|
CU & $dimensionless$ & 1 |
944 |
|
&\begin{minipage}[t]{3in} |
945 |
|
{Surface Drag coefficient for U and V} |
946 |
|
\end{minipage}\\ |
947 |
|
ET & $m^2/sec$ & Nrphys |
948 |
|
&\begin{minipage}[t]{3in} |
949 |
|
{Diffusivity coefficient for T and Q} |
950 |
|
\end{minipage}\\ |
951 |
|
EU & $m^2/sec$ & Nrphys |
952 |
|
&\begin{minipage}[t]{3in} |
953 |
|
{Diffusivity coefficient for U and V} |
954 |
|
\end{minipage}\\ |
955 |
|
TURBU & $m/sec/day$ & Nrphys |
956 |
|
&\begin{minipage}[t]{3in} |
957 |
|
{U-Momentum Changes due to Turbulence} |
958 |
|
\end{minipage}\\ |
959 |
|
TURBV & $m/sec/day$ & Nrphys |
960 |
|
&\begin{minipage}[t]{3in} |
961 |
|
{V-Momentum Changes due to Turbulence} |
962 |
|
\end{minipage}\\ |
963 |
|
TURBT & $deg/day$ & Nrphys |
964 |
|
&\begin{minipage}[t]{3in} |
965 |
|
{Temperature Changes due to Turbulence} |
966 |
|
\end{minipage}\\ |
967 |
|
TURBQ & $g/kg/day$ & Nrphys |
968 |
|
&\begin{minipage}[t]{3in} |
969 |
|
{Specific Humidity Changes due to Turbulence} |
970 |
|
\end{minipage}\\ |
971 |
|
MOISTT & $deg/day$ & Nrphys |
972 |
|
&\begin{minipage}[t]{3in} |
973 |
|
{Temperature Changes due to Moist Processes} |
974 |
|
\end{minipage}\\ |
975 |
|
MOISTQ & $g/kg/day$ & Nrphys |
976 |
|
&\begin{minipage}[t]{3in} |
977 |
|
{Specific Humidity Changes due to Moist Processes} |
978 |
|
\end{minipage}\\ |
979 |
|
RADLW & $deg/day$ & Nrphys |
980 |
|
&\begin{minipage}[t]{3in} |
981 |
|
{Net Longwave heating rate for each level} |
982 |
|
\end{minipage}\\ |
983 |
|
RADSW & $deg/day$ & Nrphys |
984 |
|
&\begin{minipage}[t]{3in} |
985 |
|
{Net Shortwave heating rate for each level} |
986 |
|
\end{minipage}\\ |
987 |
|
PREACC & $mm/day$ & 1 |
988 |
|
&\begin{minipage}[t]{3in} |
989 |
|
{Total Precipitation} |
990 |
|
\end{minipage}\\ |
991 |
|
PRECON & $mm/day$ & 1 |
992 |
|
&\begin{minipage}[t]{3in} |
993 |
|
{Convective Precipitation} |
994 |
|
\end{minipage}\\ |
995 |
|
TUFLUX & $Newton/m^2$ & Nrphys |
996 |
|
&\begin{minipage}[t]{3in} |
997 |
|
{Turbulent Flux of U-Momentum} |
998 |
|
\end{minipage}\\ |
999 |
|
TVFLUX & $Newton/m^2$ & Nrphys |
1000 |
|
&\begin{minipage}[t]{3in} |
1001 |
|
{Turbulent Flux of V-Momentum} |
1002 |
|
\end{minipage}\\ |
1003 |
|
TTFLUX & $Watts/m^2$ & Nrphys |
1004 |
|
&\begin{minipage}[t]{3in} |
1005 |
|
{Turbulent Flux of Sensible Heat} |
1006 |
|
\end{minipage}\\ |
1007 |
|
\end{tabular} |
1008 |
|
|
1009 |
|
\newpage |
1010 |
|
\vspace*{\fill} |
1011 |
|
\begin{tabular}{llll} |
1012 |
|
\hline\hline |
1013 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
1014 |
|
\hline |
1015 |
|
|
1016 |
|
&\\ |
1017 |
|
TQFLUX & $Watts/m^2$ & Nrphys |
1018 |
|
&\begin{minipage}[t]{3in} |
1019 |
|
{Turbulent Flux of Latent Heat} |
1020 |
|
\end{minipage}\\ |
1021 |
|
CN & $dimensionless$ & 1 |
1022 |
|
&\begin{minipage}[t]{3in} |
1023 |
|
{Neutral Drag Coefficient} |
1024 |
|
\end{minipage}\\ |
1025 |
|
WINDS & $m/sec$ & 1 |
1026 |
|
&\begin{minipage}[t]{3in} |
1027 |
|
{Surface Wind Speed} |
1028 |
|
\end{minipage}\\ |
1029 |
|
DTSRF & $deg$ & 1 |
1030 |
|
&\begin{minipage}[t]{3in} |
1031 |
|
{Air/Surface virtual temperature difference} |
1032 |
|
\end{minipage}\\ |
1033 |
|
TG & $deg$ & 1 |
1034 |
|
&\begin{minipage}[t]{3in} |
1035 |
|
{Ground temperature} |
1036 |
|
\end{minipage}\\ |
1037 |
|
TS & $deg$ & 1 |
1038 |
|
&\begin{minipage}[t]{3in} |
1039 |
|
{Surface air temperature (Adiabatic from lowest model layer)} |
1040 |
|
\end{minipage}\\ |
1041 |
|
DTG & $deg$ & 1 |
1042 |
|
&\begin{minipage}[t]{3in} |
1043 |
|
{Ground temperature adjustment} |
1044 |
|
\end{minipage}\\ |
1045 |
|
|
1046 |
|
QG & $g/kg$ & 1 |
1047 |
|
&\begin{minipage}[t]{3in} |
1048 |
|
{Ground specific humidity} |
1049 |
|
\end{minipage}\\ |
1050 |
|
QS & $g/kg$ & 1 |
1051 |
|
&\begin{minipage}[t]{3in} |
1052 |
|
{Saturation surface specific humidity} |
1053 |
|
\end{minipage}\\ |
1054 |
|
TGRLW & $deg$ & 1 |
1055 |
|
&\begin{minipage}[t]{3in} |
1056 |
|
{Instantaneous ground temperature used as input to the |
1057 |
|
Longwave radiation subroutine} |
1058 |
|
\end{minipage}\\ |
1059 |
|
ST4 & $Watts/m^2$ & 1 |
1060 |
|
&\begin{minipage}[t]{3in} |
1061 |
|
{Upward Longwave flux at the ground ($\sigma T^4$)} |
1062 |
|
\end{minipage}\\ |
1063 |
|
OLR & $Watts/m^2$ & 1 |
1064 |
|
&\begin{minipage}[t]{3in} |
1065 |
|
{Net upward Longwave flux at the top of the model} |
1066 |
|
\end{minipage}\\ |
1067 |
|
OLRCLR & $Watts/m^2$ & 1 |
1068 |
|
&\begin{minipage}[t]{3in} |
1069 |
|
{Net upward clearsky Longwave flux at the top of the model} |
1070 |
|
\end{minipage}\\ |
1071 |
|
LWGCLR & $Watts/m^2$ & 1 |
1072 |
|
&\begin{minipage}[t]{3in} |
1073 |
|
{Net upward clearsky Longwave flux at the ground} |
1074 |
|
\end{minipage}\\ |
1075 |
|
LWCLR & $deg/day$ & Nrphys |
1076 |
|
&\begin{minipage}[t]{3in} |
1077 |
|
{Net clearsky Longwave heating rate for each level} |
1078 |
|
\end{minipage}\\ |
1079 |
|
TLW & $deg$ & Nrphys |
1080 |
|
&\begin{minipage}[t]{3in} |
1081 |
|
{Instantaneous temperature used as input to the Longwave radiation |
1082 |
|
subroutine} |
1083 |
|
\end{minipage}\\ |
1084 |
|
SHLW & $g/g$ & Nrphys |
1085 |
|
&\begin{minipage}[t]{3in} |
1086 |
|
{Instantaneous specific humidity used as input to the Longwave radiation |
1087 |
|
subroutine} |
1088 |
|
\end{minipage}\\ |
1089 |
|
OZLW & $g/g$ & Nrphys |
1090 |
|
&\begin{minipage}[t]{3in} |
1091 |
|
{Instantaneous ozone used as input to the Longwave radiation |
1092 |
|
subroutine} |
1093 |
|
\end{minipage}\\ |
1094 |
|
CLMOLW & $0-1$ & Nrphys |
1095 |
|
&\begin{minipage}[t]{3in} |
1096 |
|
{Maximum overlap cloud fraction used in the Longwave radiation |
1097 |
|
subroutine} |
1098 |
|
\end{minipage}\\ |
1099 |
|
CLDTOT & $0-1$ & Nrphys |
1100 |
|
&\begin{minipage}[t]{3in} |
1101 |
|
{Total cloud fraction used in the Longwave and Shortwave radiation |
1102 |
|
subroutines} |
1103 |
|
\end{minipage}\\ |
1104 |
|
LWGDOWN & $Watts/m^2$ & 1 |
1105 |
|
&\begin{minipage}[t]{3in} |
1106 |
|
{Downwelling Longwave radiation at the ground} |
1107 |
|
\end{minipage}\\ |
1108 |
|
GWDT & $deg/day$ & Nrphys |
1109 |
|
&\begin{minipage}[t]{3in} |
1110 |
|
{Temperature tendency due to Gravity Wave Drag} |
1111 |
|
\end{minipage}\\ |
1112 |
|
RADSWT & $Watts/m^2$ & 1 |
1113 |
|
&\begin{minipage}[t]{3in} |
1114 |
|
{Incident Shortwave radiation at the top of the atmosphere} |
1115 |
|
\end{minipage}\\ |
1116 |
|
TAUCLD & $per 100 mb$ & Nrphys |
1117 |
|
&\begin{minipage}[t]{3in} |
1118 |
|
{Counted Cloud Optical Depth (non-dimensional) per 100 mb} |
1119 |
|
\end{minipage}\\ |
1120 |
|
TAUCLDC & $Number$ & Nrphys |
1121 |
|
&\begin{minipage}[t]{3in} |
1122 |
|
{Cloud Optical Depth Counter} |
1123 |
|
\end{minipage}\\ |
1124 |
|
\end{tabular} |
1125 |
|
\vfill |
1126 |
|
|
1127 |
|
\newpage |
1128 |
|
\vspace*{\fill} |
1129 |
|
\begin{tabular}{llll} |
1130 |
|
\hline\hline |
1131 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
1132 |
|
\hline |
1133 |
|
|
1134 |
|
&\\ |
1135 |
|
CLDLOW & $0-1$ & Nrphys |
1136 |
|
&\begin{minipage}[t]{3in} |
1137 |
|
{Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)} |
1138 |
|
\end{minipage}\\ |
1139 |
|
EVAP & $mm/day$ & 1 |
1140 |
|
&\begin{minipage}[t]{3in} |
1141 |
|
{Surface evaporation} |
1142 |
|
\end{minipage}\\ |
1143 |
|
DPDT & $hPa/day$ & 1 |
1144 |
|
&\begin{minipage}[t]{3in} |
1145 |
|
{Surface Pressure tendency} |
1146 |
|
\end{minipage}\\ |
1147 |
|
UAVE & $m/sec$ & Nrphys |
1148 |
|
&\begin{minipage}[t]{3in} |
1149 |
|
{Average U-Wind} |
1150 |
|
\end{minipage}\\ |
1151 |
|
VAVE & $m/sec$ & Nrphys |
1152 |
|
&\begin{minipage}[t]{3in} |
1153 |
|
{Average V-Wind} |
1154 |
|
\end{minipage}\\ |
1155 |
|
TAVE & $deg$ & Nrphys |
1156 |
|
&\begin{minipage}[t]{3in} |
1157 |
|
{Average Temperature} |
1158 |
|
\end{minipage}\\ |
1159 |
|
QAVE & $g/kg$ & Nrphys |
1160 |
|
&\begin{minipage}[t]{3in} |
1161 |
|
{Average Specific Humidity} |
1162 |
|
\end{minipage}\\ |
1163 |
|
OMEGA & $hPa/day$ & Nrphys |
1164 |
|
&\begin{minipage}[t]{3in} |
1165 |
|
{Vertical Velocity} |
1166 |
|
\end{minipage}\\ |
1167 |
|
DUDT & $m/sec/day$ & Nrphys |
1168 |
|
&\begin{minipage}[t]{3in} |
1169 |
|
{Total U-Wind tendency} |
1170 |
|
\end{minipage}\\ |
1171 |
|
DVDT & $m/sec/day$ & Nrphys |
1172 |
|
&\begin{minipage}[t]{3in} |
1173 |
|
{Total V-Wind tendency} |
1174 |
|
\end{minipage}\\ |
1175 |
|
DTDT & $deg/day$ & Nrphys |
1176 |
|
&\begin{minipage}[t]{3in} |
1177 |
|
{Total Temperature tendency} |
1178 |
|
\end{minipage}\\ |
1179 |
|
DQDT & $g/kg/day$ & Nrphys |
1180 |
|
&\begin{minipage}[t]{3in} |
1181 |
|
{Total Specific Humidity tendency} |
1182 |
|
\end{minipage}\\ |
1183 |
|
VORT & $10^{-4}/sec$ & Nrphys |
1184 |
|
&\begin{minipage}[t]{3in} |
1185 |
|
{Relative Vorticity} |
1186 |
|
\end{minipage}\\ |
1187 |
|
DTLS & $deg/day$ & Nrphys |
1188 |
|
&\begin{minipage}[t]{3in} |
1189 |
|
{Temperature tendency due to Stratiform Cloud Formation} |
1190 |
|
\end{minipage}\\ |
1191 |
|
DQLS & $g/kg/day$ & Nrphys |
1192 |
|
&\begin{minipage}[t]{3in} |
1193 |
|
{Specific Humidity tendency due to Stratiform Cloud Formation} |
1194 |
|
\end{minipage}\\ |
1195 |
|
USTAR & $m/sec$ & 1 |
1196 |
|
&\begin{minipage}[t]{3in} |
1197 |
|
{Surface USTAR wind} |
1198 |
|
\end{minipage}\\ |
1199 |
|
Z0 & $m$ & 1 |
1200 |
|
&\begin{minipage}[t]{3in} |
1201 |
|
{Surface roughness} |
1202 |
|
\end{minipage}\\ |
1203 |
|
FRQTRB & $0-1$ & Nrphys-1 |
1204 |
|
&\begin{minipage}[t]{3in} |
1205 |
|
{Frequency of Turbulence} |
1206 |
|
\end{minipage}\\ |
1207 |
|
PBL & $mb$ & 1 |
1208 |
|
&\begin{minipage}[t]{3in} |
1209 |
|
{Planetary Boundary Layer depth} |
1210 |
|
\end{minipage}\\ |
1211 |
|
SWCLR & $deg/day$ & Nrphys |
1212 |
|
&\begin{minipage}[t]{3in} |
1213 |
|
{Net clearsky Shortwave heating rate for each level} |
1214 |
|
\end{minipage}\\ |
1215 |
|
OSR & $Watts/m^2$ & 1 |
1216 |
|
&\begin{minipage}[t]{3in} |
1217 |
|
{Net downward Shortwave flux at the top of the model} |
1218 |
|
\end{minipage}\\ |
1219 |
|
OSRCLR & $Watts/m^2$ & 1 |
1220 |
|
&\begin{minipage}[t]{3in} |
1221 |
|
{Net downward clearsky Shortwave flux at the top of the model} |
1222 |
|
\end{minipage}\\ |
1223 |
|
CLDMAS & $kg / m^2$ & Nrphys |
1224 |
|
&\begin{minipage}[t]{3in} |
1225 |
|
{Convective cloud mass flux} |
1226 |
|
\end{minipage}\\ |
1227 |
|
UAVE & $m/sec$ & Nrphys |
1228 |
|
&\begin{minipage}[t]{3in} |
1229 |
|
{Time-averaged $u-Wind$} |
1230 |
|
\end{minipage}\\ |
1231 |
|
\end{tabular} |
1232 |
|
\vfill |
1233 |
|
|
1234 |
|
\newpage |
1235 |
|
\vspace*{\fill} |
1236 |
|
\begin{tabular}{llll} |
1237 |
|
\hline\hline |
1238 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
1239 |
|
\hline |
1240 |
|
|
1241 |
|
&\\ |
1242 |
|
VAVE & $m/sec$ & Nrphys |
1243 |
|
&\begin{minipage}[t]{3in} |
1244 |
|
{Time-averaged $v-Wind$} |
1245 |
|
\end{minipage}\\ |
1246 |
|
TAVE & $deg$ & Nrphys |
1247 |
|
&\begin{minipage}[t]{3in} |
1248 |
|
{Time-averaged $Temperature$} |
1249 |
|
\end{minipage}\\ |
1250 |
|
QAVE & $g/g$ & Nrphys |
1251 |
|
&\begin{minipage}[t]{3in} |
1252 |
|
{Time-averaged $Specific \, \, Humidity$} |
1253 |
|
\end{minipage}\\ |
1254 |
|
RFT & $deg/day$ & Nrphys |
1255 |
|
&\begin{minipage}[t]{3in} |
1256 |
|
{Temperature tendency due Rayleigh Friction} |
1257 |
|
\end{minipage}\\ |
1258 |
|
PS & $mb$ & 1 |
1259 |
|
&\begin{minipage}[t]{3in} |
1260 |
|
{Surface Pressure} |
1261 |
|
\end{minipage}\\ |
1262 |
|
QQAVE & $(m/sec)^2$ & Nrphys |
1263 |
|
&\begin{minipage}[t]{3in} |
1264 |
|
{Time-averaged $Turbulent Kinetic Energy$} |
1265 |
|
\end{minipage}\\ |
1266 |
|
SWGCLR & $Watts/m^2$ & 1 |
1267 |
|
&\begin{minipage}[t]{3in} |
1268 |
|
{Net downward clearsky Shortwave flux at the ground} |
1269 |
|
\end{minipage}\\ |
1270 |
|
PAVE & $mb$ & 1 |
1271 |
|
&\begin{minipage}[t]{3in} |
1272 |
|
{Time-averaged Surface Pressure} |
1273 |
|
\end{minipage}\\ |
1274 |
|
DIABU & $m/sec/day$ & Nrphys |
1275 |
|
&\begin{minipage}[t]{3in} |
1276 |
|
{Total Diabatic forcing on $u-Wind$} |
1277 |
|
\end{minipage}\\ |
1278 |
|
DIABV & $m/sec/day$ & Nrphys |
1279 |
|
&\begin{minipage}[t]{3in} |
1280 |
|
{Total Diabatic forcing on $v-Wind$} |
1281 |
|
\end{minipage}\\ |
1282 |
|
DIABT & $deg/day$ & Nrphys |
1283 |
|
&\begin{minipage}[t]{3in} |
1284 |
|
{Total Diabatic forcing on $Temperature$} |
1285 |
|
\end{minipage}\\ |
1286 |
|
DIABQ & $g/kg/day$ & Nrphys |
1287 |
|
&\begin{minipage}[t]{3in} |
1288 |
|
{Total Diabatic forcing on $Specific \, \, Humidity$} |
1289 |
|
\end{minipage}\\ |
1290 |
|
RFU & $m/sec/day$ & Nrphys |
1291 |
|
&\begin{minipage}[t]{3in} |
1292 |
|
{U-Wind tendency due to Rayleigh Friction} |
1293 |
|
\end{minipage}\\ |
1294 |
|
RFV & $m/sec/day$ & Nrphys |
1295 |
|
&\begin{minipage}[t]{3in} |
1296 |
|
{V-Wind tendency due to Rayleigh Friction} |
1297 |
|
\end{minipage}\\ |
1298 |
|
GWDU & $m/sec/day$ & Nrphys |
1299 |
|
&\begin{minipage}[t]{3in} |
1300 |
|
{U-Wind tendency due to Gravity Wave Drag} |
1301 |
|
\end{minipage}\\ |
1302 |
|
GWDU & $m/sec/day$ & Nrphys |
1303 |
|
&\begin{minipage}[t]{3in} |
1304 |
|
{V-Wind tendency due to Gravity Wave Drag} |
1305 |
|
\end{minipage}\\ |
1306 |
|
GWDUS & $N/m^2$ & 1 |
1307 |
|
&\begin{minipage}[t]{3in} |
1308 |
|
{U-Wind Gravity Wave Drag Stress at Surface} |
1309 |
|
\end{minipage}\\ |
1310 |
|
GWDVS & $N/m^2$ & 1 |
1311 |
|
&\begin{minipage}[t]{3in} |
1312 |
|
{V-Wind Gravity Wave Drag Stress at Surface} |
1313 |
|
\end{minipage}\\ |
1314 |
|
GWDUT & $N/m^2$ & 1 |
1315 |
|
&\begin{minipage}[t]{3in} |
1316 |
|
{U-Wind Gravity Wave Drag Stress at Top} |
1317 |
|
\end{minipage}\\ |
1318 |
|
GWDVT & $N/m^2$ & 1 |
1319 |
|
&\begin{minipage}[t]{3in} |
1320 |
|
{V-Wind Gravity Wave Drag Stress at Top} |
1321 |
|
\end{minipage}\\ |
1322 |
|
LZRAD & $mg/kg$ & Nrphys |
1323 |
|
&\begin{minipage}[t]{3in} |
1324 |
|
{Estimated Cloud Liquid Water used in Radiation} |
1325 |
|
\end{minipage}\\ |
1326 |
|
\end{tabular} |
1327 |
|
\vfill |
1328 |
|
|
1329 |
|
\newpage |
1330 |
|
\vspace*{\fill} |
1331 |
|
\begin{tabular}{llll} |
1332 |
|
\hline\hline |
1333 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
1334 |
|
\hline |
1335 |
|
|
1336 |
|
&\\ |
1337 |
|
SLP & $mb$ & 1 |
1338 |
|
&\begin{minipage}[t]{3in} |
1339 |
|
{Time-averaged Sea-level Pressure} |
1340 |
|
\end{minipage}\\ |
1341 |
|
CLDFRC & $0-1$ & 1 |
1342 |
|
&\begin{minipage}[t]{3in} |
1343 |
|
{Total Cloud Fraction} |
1344 |
|
\end{minipage}\\ |
1345 |
|
TPW & $gm/cm^2$ & 1 |
1346 |
|
&\begin{minipage}[t]{3in} |
1347 |
|
{Precipitable water} |
1348 |
|
\end{minipage}\\ |
1349 |
|
U2M & $m/sec$ & 1 |
1350 |
|
&\begin{minipage}[t]{3in} |
1351 |
|
{U-Wind at 2 meters} |
1352 |
|
\end{minipage}\\ |
1353 |
|
V2M & $m/sec$ & 1 |
1354 |
|
&\begin{minipage}[t]{3in} |
1355 |
|
{V-Wind at 2 meters} |
1356 |
|
\end{minipage}\\ |
1357 |
|
T2M & $deg$ & 1 |
1358 |
|
&\begin{minipage}[t]{3in} |
1359 |
|
{Temperature at 2 meters} |
1360 |
|
\end{minipage}\\ |
1361 |
|
Q2M & $g/kg$ & 1 |
1362 |
|
&\begin{minipage}[t]{3in} |
1363 |
|
{Specific Humidity at 2 meters} |
1364 |
|
\end{minipage}\\ |
1365 |
|
U10M & $m/sec$ & 1 |
1366 |
|
&\begin{minipage}[t]{3in} |
1367 |
|
{U-Wind at 10 meters} |
1368 |
|
\end{minipage}\\ |
1369 |
|
V10M & $m/sec$ & 1 |
1370 |
|
&\begin{minipage}[t]{3in} |
1371 |
|
{V-Wind at 10 meters} |
1372 |
|
\end{minipage}\\ |
1373 |
|
T10M & $deg$ & 1 |
1374 |
|
&\begin{minipage}[t]{3in} |
1375 |
|
{Temperature at 10 meters} |
1376 |
|
\end{minipage}\\ |
1377 |
|
Q10M & $g/kg$ & 1 |
1378 |
|
&\begin{minipage}[t]{3in} |
1379 |
|
{Specific Humidity at 10 meters} |
1380 |
|
\end{minipage}\\ |
1381 |
|
DTRAIN & $kg/m^2$ & Nrphys |
1382 |
|
&\begin{minipage}[t]{3in} |
1383 |
|
{Detrainment Cloud Mass Flux} |
1384 |
|
\end{minipage}\\ |
1385 |
|
QFILL & $g/kg/day$ & Nrphys |
1386 |
|
&\begin{minipage}[t]{3in} |
1387 |
|
{Filling of negative specific humidity} |
1388 |
|
\end{minipage}\\ |
1389 |
|
\end{tabular} |
1390 |
|
\vspace{1.5in} |
1391 |
|
\vfill |
1392 |
|
|
1393 |
|
\newpage |
1394 |
|
\vspace*{\fill} |
1395 |
|
\begin{tabular}{llll} |
1396 |
|
\hline\hline |
1397 |
|
NAME & UNITS & LEVELS & DESCRIPTION \\ |
1398 |
|
\hline |
1399 |
|
|
1400 |
|
&\\ |
1401 |
|
DTCONV & $deg/sec$ & Nr |
1402 |
|
&\begin{minipage}[t]{3in} |
1403 |
|
{Temp Change due to Convection} |
1404 |
|
\end{minipage}\\ |
1405 |
|
DQCONV & $g/kg/sec$ & Nr |
1406 |
|
&\begin{minipage}[t]{3in} |
1407 |
|
{Specific Humidity Change due to Convection} |
1408 |
|
\end{minipage}\\ |
1409 |
|
RELHUM & $percent$ & Nr |
1410 |
|
&\begin{minipage}[t]{3in} |
1411 |
|
{Relative Humidity} |
1412 |
|
\end{minipage}\\ |
1413 |
|
PRECLS & $g/m^2/sec$ & 1 |
1414 |
|
&\begin{minipage}[t]{3in} |
1415 |
|
{Large Scale Precipitation} |
1416 |
|
\end{minipage}\\ |
1417 |
|
ENPREC & $J/g$ & 1 |
1418 |
|
&\begin{minipage}[t]{3in} |
1419 |
|
{Energy of Precipitation (snow, rain Temp)} |
1420 |
|
\end{minipage}\\ |
1421 |
|
\end{tabular} |
1422 |
|
\vspace{1.5in} |
1423 |
|
\vfill |
1424 |
|
|
1425 |
|
\newpage |
1426 |
|
|
1427 |
|
\subsubsection{Fizhi Diagnostic Description} |
1428 |
|
|
1429 |
|
In this section we list and describe the diagnostic quantities available within the |
1430 |
|
GCM. The diagnostics are listed in the order that they appear in the |
1431 |
|
Diagnostic Menu, Section \ref{sec:fizhi-diagnostics:menu}. |
1432 |
|
In all cases, each diagnostic as currently archived on the output datasets |
1433 |
|
is time-averaged over its diagnostic output frequency: |
1434 |
|
|
1435 |
|
\[ |
1436 |
|
{\bf DIAGNOSTIC} = {1 \over TTOT} \sum_{t=1}^{t=TTOT} diag(t) |
1437 |
|
\] |
1438 |
|
where $TTOT = {{\bf NQDIAG} \over \Delta t}$, {\bf NQDIAG} is the |
1439 |
|
output frequency of the diagnostic, and $\Delta t$ is |
1440 |
|
the timestep over which the diagnostic is updated. |
1441 |
|
|
1442 |
|
{ \underline {UFLUX} Surface Zonal Wind Stress on the Atmosphere ($Newton/m^2$) } |
1443 |
|
|
1444 |
|
The zonal wind stress is the turbulent flux of zonal momentum from |
1445 |
|
the surface. |
1446 |
|
\[ |
1447 |
|
{\bf UFLUX} = - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
1448 |
|
\] |
1449 |
|
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
1450 |
|
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
1451 |
|
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $u$ is |
1452 |
|
the zonal wind in the lowest model layer. |
1453 |
|
\\ |
1454 |
|
|
1455 |
|
|
1456 |
|
{ \underline {VFLUX} Surface Meridional Wind Stress on the Atmosphere ($Newton/m^2$) } |
1457 |
|
|
1458 |
|
The meridional wind stress is the turbulent flux of meridional momentum from |
1459 |
|
the surface. |
1460 |
|
\[ |
1461 |
|
{\bf VFLUX} = - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u |
1462 |
|
\] |
1463 |
|
where $\rho$ = the atmospheric density at the surface, $C_{D}$ is the surface |
1464 |
|
drag coefficient, $C_u$ is the dimensionless surface exchange coefficient for momentum |
1465 |
|
(see diagnostic number 10), $W_s$ is the magnitude of the surface layer wind, and $v$ is |
1466 |
|
the meridional wind in the lowest model layer. |
1467 |
|
\\ |
1468 |
|
|
1469 |
|
{ \underline {HFLUX} Surface Flux of Sensible Heat ($Watts/m^2$) } |
1470 |
|
|
1471 |
|
The turbulent flux of sensible heat from the surface to the atmosphere is a function of the |
1472 |
|
gradient of virtual potential temperature and the eddy exchange coefficient: |
1473 |
|
\[ |
1474 |
|
{\bf HFLUX} = P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys}) |
1475 |
|
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
1476 |
|
\] |
1477 |
|
where $\rho$ = the atmospheric density at the surface, $c_{p}$ is the specific |
1478 |
|
heat of air, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
1479 |
|
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
1480 |
|
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
1481 |
|
for heat and moisture (see diagnostic number 9), and $\theta$ is the potential temperature |
1482 |
|
at the surface and at the bottom model level. |
1483 |
|
\\ |
1484 |
|
|
1485 |
|
|
1486 |
|
{ \underline {EFLUX} Surface Flux of Latent Heat ($Watts/m^2$) } |
1487 |
|
|
1488 |
|
The turbulent flux of latent heat from the surface to the atmosphere is a function of the |
1489 |
|
gradient of moisture, the potential evapotranspiration fraction and the eddy exchange coefficient: |
1490 |
|
\[ |
1491 |
|
{\bf EFLUX} = \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys}) |
1492 |
|
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t |
1493 |
|
\] |
1494 |
|
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
1495 |
|
the potential evapotranspiration actually evaporated, L is the latent |
1496 |
|
heat of evaporation, $C_{H}$ is the dimensionless surface heat transfer coefficient, $W_s$ is the |
1497 |
|
magnitude of the surface layer wind, $C_u$ is the dimensionless surface exchange coefficient |
1498 |
|
for momentum (see diagnostic number 10), $C_t$ is the dimensionless surface exchange coefficient |
1499 |
|
for heat and moisture (see diagnostic number 9), and $q_{surface}$ and $q_{Nrphys}$ are the specific |
1500 |
|
humidity at the surface and at the bottom model level, respectively. |
1501 |
|
\\ |
1502 |
|
|
1503 |
|
{ \underline {QICE} Heat Conduction Through Sea Ice ($Watts/m^2$) } |
1504 |
|
|
1505 |
|
Over sea ice there is an additional source of energy at the surface due to the heat |
1506 |
|
conduction from the relatively warm ocean through the sea ice. The heat conduction |
1507 |
|
through sea ice represents an additional energy source term for the ground temperature equation. |
1508 |
|
|
1509 |
|
\[ |
1510 |
|
{\bf QICE} = {C_{ti} \over {H_i}} (T_i-T_g) |
1511 |
|
\] |
1512 |
|
|
1513 |
|
where $C_{ti}$ is the thermal conductivity of ice, $H_i$ is the ice thickness, assumed to |
1514 |
|
be $3 \hspace{.1cm} m$ where sea ice is present, $T_i$ is 273 degrees Kelvin, and |
1515 |
|
$T_g$ is the temperature of the sea ice. |
1516 |
|
|
1517 |
|
NOTE: QICE is not available through model version 5.3, but is available in subsequent versions. |
1518 |
|
\\ |
1519 |
|
|
1520 |
|
|
1521 |
|
{ \underline {RADLWG} Net upward Longwave Flux at the surface ($Watts/m^2$)} |
1522 |
|
|
1523 |
|
\begin{eqnarray*} |
1524 |
|
{\bf RADLWG} & = & F_{LW,Nrphys+1}^{Net} \\ |
1525 |
|
& = & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow |
1526 |
|
\end{eqnarray*} |
1527 |
|
\\ |
1528 |
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1529 |
|
$F_{LW}^\uparrow$ is |
1530 |
|
the upward Longwave flux and $F_{LW}^\downarrow$ is the downward Longwave flux. |
1531 |
|
\\ |
1532 |
|
|
1533 |
|
{ \underline {RADSWG} Net downard shortwave Flux at the surface ($Watts/m^2$)} |
1534 |
|
|
1535 |
|
\begin{eqnarray*} |
1536 |
|
{\bf RADSWG} & = & F_{SW,Nrphys+1}^{Net} \\ |
1537 |
|
& = & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow |
1538 |
|
\end{eqnarray*} |
1539 |
|
\\ |
1540 |
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
1541 |
|
$F_{SW}^\downarrow$ is |
1542 |
|
the downward Shortwave flux and $F_{SW}^\uparrow$ is the upward Shortwave flux. |
1543 |
|
\\ |
1544 |
|
|
1545 |
|
|
1546 |
|
\noindent |
1547 |
|
{ \underline {RI} Richardson Number} ($dimensionless$) |
1548 |
|
|
1549 |
|
\noindent |
1550 |
|
The non-dimensional stability indicator is the ratio of the buoyancy to the shear: |
1551 |
|
\[ |
1552 |
|
{\bf RI} = { { {g \over \theta_v} \pp {\theta_v}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
1553 |
|
= { {c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} } \over { (\pp{u}{z})^2 + (\pp{v}{z})^2 } } |
1554 |
|
\] |
1555 |
|
\\ |
1556 |
|
where we used the hydrostatic equation: |
1557 |
|
\[ |
1558 |
|
{\pp{\Phi}{P^ \kappa}} = c_p \theta_v |
1559 |
|
\] |
1560 |
|
Negative values indicate unstable buoyancy {\bf{AND}} shear, small positive values ($<0.4$) |
1561 |
|
indicate dominantly unstable shear, and large positive values indicate dominantly stable |
1562 |
|
stratification. |
1563 |
|
\\ |
1564 |
|
|
1565 |
|
\noindent |
1566 |
|
{ \underline {CT} Surface Exchange Coefficient for Temperature and Moisture ($dimensionless$) } |
1567 |
|
|
1568 |
|
\noindent |
1569 |
|
The surface exchange coefficient is obtained from the similarity functions for the stability |
1570 |
|
dependant flux profile relationships: |
1571 |
|
\[ |
1572 |
|
{\bf CT} = -{( {\overline{w^{\prime}\theta^{\prime}}}) \over {u_* \Delta \theta }} = |
1573 |
|
-{( {\overline{w^{\prime}q^{\prime}}}) \over {u_* \Delta q }} = |
1574 |
|
{ k \over { (\psi_{h} + \psi_{g}) } } |
1575 |
|
\] |
1576 |
|
where $\psi_h$ is the surface layer non-dimensional temperature change and $\psi_g$ is the |
1577 |
|
viscous sublayer non-dimensional temperature or moisture change: |
1578 |
|
\[ |
1579 |
|
\psi_{h} = {\int_{\zeta_{0}}^{\zeta} {\phi_{h} \over \zeta} d \zeta} \hspace{1cm} and |
1580 |
|
\hspace{1cm} \psi_{g} = { 0.55 (Pr^{2/3} - 0.2) \over \nu^{1/2} } |
1581 |
|
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2} |
1582 |
|
\] |
1583 |
|
and: |
1584 |
|
$h_{0} = 30z_{0}$ with a maximum value over land of 0.01 |
1585 |
|
|
1586 |
|
\noindent |
1587 |
|
$\phi_h$ is the similarity function of $\zeta$, which expresses the stability dependance of |
1588 |
|
the temperature and moisture gradients, specified differently for stable and unstable |
1589 |
|
layers according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
1590 |
|
non-dimensional stability parameter, Pr is the Prandtl number for air, $\nu$ is the molecular |
1591 |
|
viscosity, $z_{0}$ is the surface roughness length, $u_*$ is the surface stress velocity |
1592 |
|
(see diagnostic number 67), and the subscript ref refers to a reference value. |
1593 |
|
\\ |
1594 |
|
|
1595 |
|
\noindent |
1596 |
|
{ \underline {CU} Surface Exchange Coefficient for Momentum ($dimensionless$) } |
1597 |
|
|
1598 |
|
\noindent |
1599 |
|
The surface exchange coefficient is obtained from the similarity functions for the stability |
1600 |
|
dependant flux profile relationships: |
1601 |
|
\[ |
1602 |
|
{\bf CU} = {u_* \over W_s} = { k \over \psi_{m} } |
1603 |
|
\] |
1604 |
|
where $\psi_m$ is the surface layer non-dimensional wind shear: |
1605 |
|
\[ |
1606 |
|
\psi_{m} = {\int_{\zeta_{0}}^{\zeta} {\phi_{m} \over \zeta} d \zeta} |
1607 |
|
\] |
1608 |
|
\noindent |
1609 |
|
$\phi_m$ is the similarity function of $\zeta$, which expresses the stability dependance of |
1610 |
|
the temperature and moisture gradients, specified differently for stable and unstable layers |
1611 |
|
according to Helfand and Schubert, 1993. k is the Von Karman constant, $\zeta$ is the |
1612 |
|
non-dimensional stability parameter, $u_*$ is the surface stress velocity |
1613 |
|
(see diagnostic number 67), and $W_s$ is the magnitude of the surface layer wind. |
1614 |
|
\\ |
1615 |
|
|
1616 |
|
\noindent |
1617 |
|
{ \underline {ET} Diffusivity Coefficient for Temperature and Moisture ($m^2/sec$) } |
1618 |
|
|
1619 |
|
\noindent |
1620 |
|
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or |
1621 |
|
moisture flux for the atmosphere above the surface layer can be expressed as a turbulent |
1622 |
|
diffusion coefficient $K_h$ times the negative of the gradient of potential temperature |
1623 |
|
or moisture. In the Helfand and Labraga (1988) adaptation of this closure, $K_h$ |
1624 |
|
takes the form: |
1625 |
|
\[ |
1626 |
|
{\bf ET} = K_h = -{( {\overline{w^{\prime}\theta_v^{\prime}}}) \over {\pp{\theta_v}{z}} } |
1627 |
|
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence} |
1628 |
|
\\ { q^2 \over {q_e} } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
1629 |
|
\] |
1630 |
|
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
1631 |
|
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
1632 |
|
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
1633 |
|
depth, |
1634 |
|
$S_H$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
1635 |
|
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
1636 |
|
dimensionless buoyancy and wind shear |
1637 |
|
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
1638 |
|
are functions of the Richardson number. |
1639 |
|
|
1640 |
|
\noindent |
1641 |
|
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
1642 |
|
see Helfand and Labraga, 1988. |
1643 |
|
|
1644 |
|
\noindent |
1645 |
|
In the surface layer, ${\bf {ET}}$ is the exchange coefficient for heat and moisture, |
1646 |
|
in units of $m/sec$, given by: |
1647 |
|
\[ |
1648 |
|
{\bf ET_{Nrphys}} = C_t * u_* = C_H W_s |
1649 |
|
\] |
1650 |
|
\noindent |
1651 |
|
where $C_t$ is the dimensionless exchange coefficient for heat and moisture from the |
1652 |
|
surface layer similarity functions (see diagnostic number 9), $u_*$ is the surface |
1653 |
|
friction velocity (see diagnostic number 67), $C_H$ is the heat transfer coefficient, |
1654 |
|
and $W_s$ is the magnitude of the surface layer wind. |
1655 |
|
\\ |
1656 |
|
|
1657 |
|
\noindent |
1658 |
|
{ \underline {EU} Diffusivity Coefficient for Momentum ($m^2/sec$) } |
1659 |
|
|
1660 |
|
\noindent |
1661 |
|
In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat |
1662 |
|
momentum flux for the atmosphere above the surface layer can be expressed as a turbulent |
1663 |
|
diffusion coefficient $K_m$ times the negative of the gradient of the u-wind. |
1664 |
|
In the Helfand and Labraga (1988) adaptation of this closure, $K_m$ |
1665 |
|
takes the form: |
1666 |
|
\[ |
1667 |
|
{\bf EU} = K_m = -{( {\overline{u^{\prime}w^{\prime}}}) \over {\pp{U}{z}} } |
1668 |
|
= \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence} |
1669 |
|
\\ { q^2 \over {q_e} } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right. |
1670 |
|
\] |
1671 |
|
\noindent |
1672 |
|
where $q$ is the turbulent velocity, or $\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm} |
1673 |
|
energy}$, $q_e$ is the turbulence velocity derived from the more simple level 2.0 model, |
1674 |
|
which describes equilibrium turbulence, $\ell$ is the master length scale related to the layer |
1675 |
|
depth, |
1676 |
|
$S_M$ is a function of $G_H$ and $G_M$, the dimensionless buoyancy and |
1677 |
|
wind shear parameters, respectively, or a function of $G_{H_e}$ and $G_{M_e}$, the equilibrium |
1678 |
|
dimensionless buoyancy and wind shear |
1679 |
|
parameters. Both $G_H$ and $G_M$, and their equilibrium values $G_{H_e}$ and $G_{M_e}$, |
1680 |
|
are functions of the Richardson number. |
1681 |
|
|
1682 |
|
\noindent |
1683 |
|
For the detailed equations and derivations of the modified level 2.5 closure scheme, |
1684 |
|
see Helfand and Labraga, 1988. |
1685 |
|
|
1686 |
|
\noindent |
1687 |
|
In the surface layer, ${\bf {EU}}$ is the exchange coefficient for momentum, |
1688 |
|
in units of $m/sec$, given by: |
1689 |
|
\[ |
1690 |
|
{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s |
1691 |
|
\] |
1692 |
|
\noindent |
1693 |
|
where $C_u$ is the dimensionless exchange coefficient for momentum from the surface layer |
1694 |
|
similarity functions (see diagnostic number 10), $u_*$ is the surface friction velocity |
1695 |
|
(see diagnostic number 67), $C_D$ is the surface drag coefficient, and $W_s$ is the |
1696 |
|
magnitude of the surface layer wind. |
1697 |
|
\\ |
1698 |
|
|
1699 |
|
\noindent |
1700 |
|
{ \underline {TURBU} Zonal U-Momentum changes due to Turbulence ($m/sec/day$) } |
1701 |
|
|
1702 |
|
\noindent |
1703 |
|
The tendency of U-Momentum due to turbulence is written: |
1704 |
|
\[ |
1705 |
|
{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})} |
1706 |
|
= {\pp{}{z} }{(K_m \pp{u}{z})} |
1707 |
|
\] |
1708 |
|
|
1709 |
|
\noindent |
1710 |
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
1711 |
|
flux of u-momentum in terms of $K_m$, and the equation has the form of a diffusion |
1712 |
|
equation. |
1713 |
|
|
1714 |
|
\noindent |
1715 |
|
{ \underline {TURBV} Meridional V-Momentum changes due to Turbulence ($m/sec/day$) } |
1716 |
|
|
1717 |
|
\noindent |
1718 |
|
The tendency of V-Momentum due to turbulence is written: |
1719 |
|
\[ |
1720 |
|
{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})} |
1721 |
|
= {\pp{}{z} }{(K_m \pp{v}{z})} |
1722 |
|
\] |
1723 |
|
|
1724 |
|
\noindent |
1725 |
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
1726 |
|
flux of v-momentum in terms of $K_m$, and the equation has the form of a diffusion |
1727 |
|
equation. |
1728 |
|
\\ |
1729 |
|
|
1730 |
|
\noindent |
1731 |
|
{ \underline {TURBT} Temperature changes due to Turbulence ($deg/day$) } |
1732 |
|
|
1733 |
|
\noindent |
1734 |
|
The tendency of temperature due to turbulence is written: |
1735 |
|
\[ |
1736 |
|
{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} = |
1737 |
|
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})} |
1738 |
|
= P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})} |
1739 |
|
\] |
1740 |
|
|
1741 |
|
\noindent |
1742 |
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
1743 |
|
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
1744 |
|
equation. |
1745 |
|
\\ |
1746 |
|
|
1747 |
|
\noindent |
1748 |
|
{ \underline {TURBQ} Specific Humidity changes due to Turbulence ($g/kg/day$) } |
1749 |
|
|
1750 |
|
\noindent |
1751 |
|
The tendency of specific humidity due to turbulence is written: |
1752 |
|
\[ |
1753 |
|
{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})} |
1754 |
|
= {\pp{}{z} }{(K_h \pp{q}{z})} |
1755 |
|
\] |
1756 |
|
|
1757 |
|
\noindent |
1758 |
|
The Helfand and Labraga level 2.5 scheme models the turbulent |
1759 |
|
flux of temperature in terms of $K_h$, and the equation has the form of a diffusion |
1760 |
|
equation. |
1761 |
|
\\ |
1762 |
|
|
1763 |
|
\noindent |
1764 |
|
{ \underline {MOISTT} Temperature Changes Due to Moist Processes ($deg/day$) } |
1765 |
|
|
1766 |
|
\noindent |
1767 |
|
\[ |
1768 |
|
{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls} |
1769 |
|
\] |
1770 |
|
where: |
1771 |
|
\[ |
1772 |
|
\left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over c_p} \Gamma_s \right)_i |
1773 |
|
\hspace{.4cm} and |
1774 |
|
\hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = {L \over c_p } (q^*-q) |
1775 |
|
\] |
1776 |
|
and |
1777 |
|
\[ |
1778 |
|
\Gamma_s = g \eta \pp{s}{p} |
1779 |
|
\] |
1780 |
|
|
1781 |
|
\noindent |
1782 |
|
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
1783 |
|
precipitation processes, or supersaturation rain. |
1784 |
|
The summation refers to contributions from each cloud type called by RAS. |
1785 |
|
The dry static energy is given |
1786 |
|
as $s$, the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
1787 |
|
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
1788 |
|
the description of the convective parameterization. The fractional adjustment, or relaxation |
1789 |
|
parameter, for each cloud type is given as $\alpha$, while |
1790 |
|
$R$ is the rain re-evaporation adjustment. |
1791 |
|
\\ |
1792 |
|
|
1793 |
|
\noindent |
1794 |
|
{ \underline {MOISTQ} Specific Humidity Changes Due to Moist Processes ($g/kg/day$) } |
1795 |
|
|
1796 |
|
\noindent |
1797 |
|
\[ |
1798 |
|
{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls} |
1799 |
|
\] |
1800 |
|
where: |
1801 |
|
\[ |
1802 |
|
\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha { m_B \over {L}}(\Gamma_h-\Gamma_s) \right)_i |
1803 |
|
\hspace{.4cm} and |
1804 |
|
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q) |
1805 |
|
\] |
1806 |
|
and |
1807 |
|
\[ |
1808 |
|
\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p} |
1809 |
|
\] |
1810 |
|
\noindent |
1811 |
|
The subscript $c$ refers to convective processes, while the subscript $ls$ refers to large scale |
1812 |
|
precipitation processes, or supersaturation rain. |
1813 |
|
The summation refers to contributions from each cloud type called by RAS. |
1814 |
|
The dry static energy is given as $s$, |
1815 |
|
the moist static energy is given as $h$, |
1816 |
|
the convective cloud base mass flux is given as $m_B$, and the cloud entrainment is |
1817 |
|
given as $\eta$, which are explicitly defined in Section \ref{sec:fizhi:mc}, |
1818 |
|
the description of the convective parameterization. The fractional adjustment, or relaxation |
1819 |
|
parameter, for each cloud type is given as $\alpha$, while |
1820 |
|
$R$ is the rain re-evaporation adjustment. |
1821 |
|
\\ |
1822 |
|
|
1823 |
|
\noindent |
1824 |
|
{ \underline {RADLW} Heating Rate due to Longwave Radiation ($deg/day$) } |
1825 |
|
|
1826 |
|
\noindent |
1827 |
|
The net longwave heating rate is calculated as the vertical divergence of the |
1828 |
|
net terrestrial radiative fluxes. |
1829 |
|
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
1830 |
|
longwave routine. |
1831 |
|
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
1832 |
|
For a given cloud fraction, |
1833 |
|
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
1834 |
|
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
1835 |
|
for the upward and downward radiative fluxes. |
1836 |
|
(see Section \ref{sec:fizhi:radcloud}). |
1837 |
|
The cloudy-sky flux is then obtained as: |
1838 |
|
|
1839 |
|
\noindent |
1840 |
|
\[ |
1841 |
|
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
1842 |
|
\] |
1843 |
|
|
1844 |
|
\noindent |
1845 |
|
Finally, the net longwave heating rate is calculated as the vertical divergence of the |
1846 |
|
net terrestrial radiative fluxes: |
1847 |
|
\[ |
1848 |
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F_{LW}^{NET} , |
1849 |
|
\] |
1850 |
|
or |
1851 |
|
\[ |
1852 |
|
{\bf RADLW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F_{LW}^{NET} . |
1853 |
|
\] |
1854 |
|
|
1855 |
|
\noindent |
1856 |
|
where $g$ is the accelation due to gravity, |
1857 |
|
$c_p$ is the heat capacity of air at constant pressure, |
1858 |
|
and |
1859 |
|
\[ |
1860 |
|
F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow |
1861 |
|
\] |
1862 |
|
\\ |
1863 |
|
|
1864 |
|
|
1865 |
|
\noindent |
1866 |
|
{ \underline {RADSW} Heating Rate due to Shortwave Radiation ($deg/day$) } |
1867 |
|
|
1868 |
|
\noindent |
1869 |
|
The net Shortwave heating rate is calculated as the vertical divergence of the |
1870 |
|
net solar radiative fluxes. |
1871 |
|
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
1872 |
|
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
1873 |
|
both CLMO (maximum overlap cloud fraction) and |
1874 |
|
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
1875 |
|
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
1876 |
|
true time-averaged cloud fractions CLMO |
1877 |
|
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
1878 |
|
input at the top of the atmosphere. |
1879 |
|
|
1880 |
|
\noindent |
1881 |
|
The heating rate due to Shortwave Radiation under cloudy skies is defined as: |
1882 |
|
\[ |
1883 |
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT}, |
1884 |
|
\] |
1885 |
|
or |
1886 |
|
\[ |
1887 |
|
{\bf RADSW} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} . |
1888 |
|
\] |
1889 |
|
|
1890 |
|
\noindent |
1891 |
|
where $g$ is the accelation due to gravity, |
1892 |
|
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
1893 |
|
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
1894 |
|
\[ |
1895 |
|
F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow |
1896 |
|
\] |
1897 |
|
\\ |
1898 |
|
|
1899 |
|
\noindent |
1900 |
|
{ \underline {PREACC} Total (Large-scale + Convective) Accumulated Precipition ($mm/day$) } |
1901 |
|
|
1902 |
|
\noindent |
1903 |
|
For a change in specific humidity due to moist processes, $\Delta q_{moist}$, |
1904 |
|
the vertical integral or total precipitable amount is given by: |
1905 |
|
\[ |
1906 |
|
{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta q_{moist} |
1907 |
|
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{moist} dp |
1908 |
|
\] |
1909 |
|
\\ |
1910 |
|
|
1911 |
|
\noindent |
1912 |
|
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1913 |
|
time step, scaled to $mm/day$. |
1914 |
|
\\ |
1915 |
|
|
1916 |
|
\noindent |
1917 |
|
{ \underline {PRECON} Convective Precipition ($mm/day$) } |
1918 |
|
|
1919 |
|
\noindent |
1920 |
|
For a change in specific humidity due to sub-grid scale cumulus convective processes, $\Delta q_{cum}$, |
1921 |
|
the vertical integral or total precipitable amount is given by: |
1922 |
|
\[ |
1923 |
|
{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta q_{cum} |
1924 |
|
{dp \over g} = {1 \over g} \int_0^1 \Delta q_{cum} dp |
1925 |
|
\] |
1926 |
|
\\ |
1927 |
|
|
1928 |
|
\noindent |
1929 |
|
A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes |
1930 |
|
time step, scaled to $mm/day$. |
1931 |
|
\\ |
1932 |
|
|
1933 |
|
\noindent |
1934 |
|
{ \underline {TUFLUX} Turbulent Flux of U-Momentum ($Newton/m^2$) } |
1935 |
|
|
1936 |
|
\noindent |
1937 |
|
The turbulent flux of u-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1938 |
|
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1939 |
|
|
1940 |
|
\[ |
1941 |
|
{\bf TUFLUX} = {\rho } {(\overline{u^{\prime}w^{\prime}})} = |
1942 |
|
{\rho } {(- K_m \pp{U}{z})} |
1943 |
|
\] |
1944 |
|
|
1945 |
|
\noindent |
1946 |
|
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1947 |
|
\\ |
1948 |
|
|
1949 |
|
\noindent |
1950 |
|
{ \underline {TVFLUX} Turbulent Flux of V-Momentum ($Newton/m^2$) } |
1951 |
|
|
1952 |
|
\noindent |
1953 |
|
The turbulent flux of v-momentum is calculated for $diagnostic \hspace{.2cm} purposes |
1954 |
|
\hspace{.2cm} only$ from the eddy coefficient for momentum: |
1955 |
|
|
1956 |
|
\[ |
1957 |
|
{\bf TVFLUX} = {\rho } {(\overline{v^{\prime}w^{\prime}})} = |
1958 |
|
{\rho } {(- K_m \pp{V}{z})} |
1959 |
|
\] |
1960 |
|
|
1961 |
|
\noindent |
1962 |
|
where $\rho$ is the air density, and $K_m$ is the eddy coefficient. |
1963 |
|
\\ |
1964 |
|
|
1965 |
|
|
1966 |
|
\noindent |
1967 |
|
{ \underline {TTFLUX} Turbulent Flux of Sensible Heat ($Watts/m^2$) } |
1968 |
|
|
1969 |
|
\noindent |
1970 |
|
The turbulent flux of sensible heat is calculated for $diagnostic \hspace{.2cm} purposes |
1971 |
|
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1972 |
|
|
1973 |
|
\noindent |
1974 |
|
\[ |
1975 |
|
{\bf TTFLUX} = c_p {\rho } |
1976 |
|
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})} |
1977 |
|
= c_p {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})} |
1978 |
|
\] |
1979 |
|
|
1980 |
|
\noindent |
1981 |
|
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
1982 |
|
\\ |
1983 |
|
|
1984 |
|
|
1985 |
|
\noindent |
1986 |
|
{ \underline {TQFLUX} Turbulent Flux of Latent Heat ($Watts/m^2$) } |
1987 |
|
|
1988 |
|
\noindent |
1989 |
|
The turbulent flux of latent heat is calculated for $diagnostic \hspace{.2cm} purposes |
1990 |
|
\hspace{.2cm} only$ from the eddy coefficient for heat and moisture: |
1991 |
|
|
1992 |
|
\noindent |
1993 |
|
\[ |
1994 |
|
{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} = |
1995 |
|
{L {\rho }(- K_h \pp{q}{z})} |
1996 |
|
\] |
1997 |
|
|
1998 |
|
\noindent |
1999 |
|
where $\rho$ is the air density, and $K_h$ is the eddy coefficient. |
2000 |
|
\\ |
2001 |
|
|
2002 |
|
|
2003 |
|
\noindent |
2004 |
|
{ \underline {CN} Neutral Drag Coefficient ($dimensionless$) } |
2005 |
|
|
2006 |
|
\noindent |
2007 |
|
The drag coefficient for momentum obtained by assuming a neutrally stable surface layer: |
2008 |
|
\[ |
2009 |
|
{\bf CN} = { k \over { \ln({h \over {z_0}})} } |
2010 |
|
\] |
2011 |
|
|
2012 |
|
\noindent |
2013 |
|
where $k$ is the Von Karman constant, $h$ is the height of the surface layer, and |
2014 |
|
$z_0$ is the surface roughness. |
2015 |
|
|
2016 |
|
\noindent |
2017 |
|
NOTE: CN is not available through model version 5.3, but is available in subsequent |
2018 |
|
versions. |
2019 |
|
\\ |
2020 |
|
|
2021 |
|
\noindent |
2022 |
|
{ \underline {WINDS} Surface Wind Speed ($meter/sec$) } |
2023 |
|
|
2024 |
|
\noindent |
2025 |
|
The surface wind speed is calculated for the last internal turbulence time step: |
2026 |
|
\[ |
2027 |
|
{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2} |
2028 |
|
\] |
2029 |
|
|
2030 |
|
\noindent |
2031 |
|
where the subscript $Nrphys$ refers to the lowest model level. |
2032 |
|
\\ |
2033 |
|
|
2034 |
|
\noindent |
2035 |
|
{ \underline {DTSRF} Air/Surface Virtual Temperature Difference ($deg \hspace{.1cm} K$) } |
2036 |
|
|
2037 |
|
\noindent |
2038 |
|
The air/surface virtual temperature difference measures the stability of the surface layer: |
2039 |
|
\[ |
2040 |
|
{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf} |
2041 |
|
\] |
2042 |
|
\noindent |
2043 |
|
where |
2044 |
|
\[ |
2045 |
|
\theta_{v{Nrphys+1}} = { T_g \over {P^{\kappa}_{surf}} } (1 + .609 q_{Nrphys+1}) \hspace{1cm} |
2046 |
|
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
2047 |
|
\] |
2048 |
|
|
2049 |
|
\noindent |
2050 |
|
$\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
2051 |
|
$q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature |
2052 |
|
and surface pressure, level $Nrphys$ refers to the lowest model level and level $Nrphys+1$ |
2053 |
|
refers to the surface. |
2054 |
|
\\ |
2055 |
|
|
2056 |
|
|
2057 |
|
\noindent |
2058 |
|
{ \underline {TG} Ground Temperature ($deg \hspace{.1cm} K$) } |
2059 |
|
|
2060 |
|
\noindent |
2061 |
|
The ground temperature equation is solved as part of the turbulence package |
2062 |
|
using a backward implicit time differencing scheme: |
2063 |
|
\[ |
2064 |
|
{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm} |
2065 |
|
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE |
2066 |
|
\] |
2067 |
|
|
2068 |
|
\noindent |
2069 |
|
where $R_{sw}$ is the net surface downward shortwave radiative flux, $R_{lw}$ is the |
2070 |
|
net surface upward longwave radiative flux, $Q_{ice}$ is the heat conduction through |
2071 |
|
sea ice, $H$ is the upward sensible heat flux, $LE$ is the upward latent heat |
2072 |
|
flux, and $C_g$ is the total heat capacity of the ground. |
2073 |
|
$C_g$ is obtained by solving a heat diffusion equation |
2074 |
|
for the penetration of the diurnal cycle into the ground (Blackadar, 1977), and is given by: |
2075 |
|
\[ |
2076 |
|
C_g = \sqrt{ {\lambda C_s \over {2 \omega} } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3} |
2077 |
|
{ 86400. \over {2 \pi} } } \, \, . |
2078 |
|
\] |
2079 |
|
\noindent |
2080 |
|
Here, the thermal conductivity, $\lambda$, is equal to $2x10^{-3}$ ${ly\over{ sec}} |
2081 |
|
{cm \over {^oK}}$, |
2082 |
|
the angular velocity of the earth, $\omega$, is written as $86400$ $sec/day$ divided |
2083 |
|
by $2 \pi$ $radians/ |
2084 |
|
day$, and the expression for $C_s$, the heat capacity per unit volume at the surface, |
2085 |
|
is a function of the ground wetness, $W$. |
2086 |
|
\\ |
2087 |
|
|
2088 |
|
\noindent |
2089 |
|
{ \underline {TS} Surface Temperature ($deg \hspace{.1cm} K$) } |
2090 |
|
|
2091 |
|
\noindent |
2092 |
|
The surface temperature estimate is made by assuming that the model's lowest |
2093 |
|
layer is well-mixed, and therefore that $\theta$ is constant in that layer. |
2094 |
|
The surface temperature is therefore: |
2095 |
|
\[ |
2096 |
|
{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf} |
2097 |
|
\] |
2098 |
|
\\ |
2099 |
|
|
2100 |
|
\noindent |
2101 |
|
{ \underline {DTG} Surface Temperature Adjustment ($deg \hspace{.1cm} K$) } |
2102 |
|
|
2103 |
|
\noindent |
2104 |
|
The change in surface temperature from one turbulence time step to the next, solved |
2105 |
|
using the Ground Temperature Equation (see diagnostic number 30) is calculated: |
2106 |
|
\[ |
2107 |
|
{\bf DTG} = {T_g}^{n} - {T_g}^{n-1} |
2108 |
|
\] |
2109 |
|
|
2110 |
|
\noindent |
2111 |
|
where superscript $n$ refers to the new, updated time level, and the superscript $n-1$ |
2112 |
|
refers to the value at the previous turbulence time level. |
2113 |
|
\\ |
2114 |
|
|
2115 |
|
\noindent |
2116 |
|
{ \underline {QG} Ground Specific Humidity ($g/kg$) } |
2117 |
|
|
2118 |
|
\noindent |
2119 |
|
The ground specific humidity is obtained by interpolating between the specific |
2120 |
|
humidity at the lowest model level and the specific humidity of a saturated ground. |
2121 |
|
The interpolation is performed using the potential evapotranspiration function: |
2122 |
|
\[ |
2123 |
|
{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys}) |
2124 |
|
\] |
2125 |
|
|
2126 |
|
\noindent |
2127 |
|
where $\beta$ is the surface potential evapotranspiration coefficient ($\beta=1$ over oceans), |
2128 |
|
and $q^*(T_g,P_s)$ is the saturation specific humidity at the ground temperature and surface |
2129 |
|
pressure. |
2130 |
|
\\ |
2131 |
|
|
2132 |
|
\noindent |
2133 |
|
{ \underline {QS} Saturation Surface Specific Humidity ($g/kg$) } |
2134 |
|
|
2135 |
|
\noindent |
2136 |
|
The surface saturation specific humidity is the saturation specific humidity at |
2137 |
|
the ground temprature and surface pressure: |
2138 |
|
\[ |
2139 |
|
{\bf QS} = q^*(T_g,P_s) |
2140 |
|
\] |
2141 |
|
\\ |
2142 |
|
|
2143 |
|
\noindent |
2144 |
|
{ \underline {TGRLW} Instantaneous ground temperature used as input to the Longwave |
2145 |
|
radiation subroutine (deg)} |
2146 |
|
\[ |
2147 |
|
{\bf TGRLW} = T_g(\lambda , \phi ,n) |
2148 |
|
\] |
2149 |
|
\noindent |
2150 |
|
where $T_g$ is the model ground temperature at the current time step $n$. |
2151 |
|
\\ |
2152 |
|
|
2153 |
|
|
2154 |
|
\noindent |
2155 |
|
{ \underline {ST4} Upward Longwave flux at the surface ($Watts/m^2$) } |
2156 |
|
\[ |
2157 |
|
{\bf ST4} = \sigma T^4 |
2158 |
|
\] |
2159 |
|
\noindent |
2160 |
|
where $\sigma$ is the Stefan-Boltzmann constant and T is the temperature. |
2161 |
|
\\ |
2162 |
|
|
2163 |
|
\noindent |
2164 |
|
{ \underline {OLR} Net upward Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
2165 |
|
\[ |
2166 |
|
{\bf OLR} = F_{LW,top}^{NET} |
2167 |
|
\] |
2168 |
|
\noindent |
2169 |
|
where top indicates the top of the first model layer. |
2170 |
|
In the GCM, $p_{top}$ = 0.0 mb. |
2171 |
|
\\ |
2172 |
|
|
2173 |
|
|
2174 |
|
\noindent |
2175 |
|
{ \underline {OLRCLR} Net upward clearsky Longwave flux at $p=p_{top}$ ($Watts/m^2$) } |
2176 |
|
\[ |
2177 |
|
{\bf OLRCLR} = F(clearsky)_{LW,top}^{NET} |
2178 |
|
\] |
2179 |
|
\noindent |
2180 |
|
where top indicates the top of the first model layer. |
2181 |
|
In the GCM, $p_{top}$ = 0.0 mb. |
2182 |
|
\\ |
2183 |
|
|
2184 |
|
\noindent |
2185 |
|
{ \underline {LWGCLR} Net upward clearsky Longwave flux at the surface ($Watts/m^2$) } |
2186 |
|
|
2187 |
|
\noindent |
2188 |
|
\begin{eqnarray*} |
2189 |
|
{\bf LWGCLR} & = & F(clearsky)_{LW,Nrphys+1}^{Net} \\ |
2190 |
|
& = & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow |
2191 |
|
\end{eqnarray*} |
2192 |
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
2193 |
|
$F(clearsky)_{LW}^\uparrow$ is |
2194 |
|
the upward clearsky Longwave flux and the $F(clearsky)_{LW}^\downarrow$ is the downward clearsky Longwave flux. |
2195 |
|
\\ |
2196 |
|
|
2197 |
|
\noindent |
2198 |
|
{ \underline {LWCLR} Heating Rate due to Clearsky Longwave Radiation ($deg/day$) } |
2199 |
|
|
2200 |
|
\noindent |
2201 |
|
The net longwave heating rate is calculated as the vertical divergence of the |
2202 |
|
net terrestrial radiative fluxes. |
2203 |
|
Both the clear-sky and cloudy-sky longwave fluxes are computed within the |
2204 |
|
longwave routine. |
2205 |
|
The subroutine calculates the clear-sky flux, $F^{clearsky}_{LW}$, first. |
2206 |
|
For a given cloud fraction, |
2207 |
|
the clear line-of-sight probability $C(p,p^{\prime})$ is computed from the current level pressure $p$ |
2208 |
|
to the model top pressure, $p^{\prime} = p_{top}$, and the model surface pressure, $p^{\prime} = p_{surf}$, |
2209 |
|
for the upward and downward radiative fluxes. |
2210 |
|
(see Section \ref{sec:fizhi:radcloud}). |
2211 |
|
The cloudy-sky flux is then obtained as: |
2212 |
|
|
2213 |
|
\noindent |
2214 |
|
\[ |
2215 |
|
F_{LW} = C(p,p') \cdot F^{clearsky}_{LW}, |
2216 |
|
\] |
2217 |
|
|
2218 |
|
\noindent |
2219 |
|
Thus, {\bf LWCLR} is defined as the net longwave heating rate due to the |
2220 |
|
vertical divergence of the |
2221 |
|
clear-sky longwave radiative flux: |
2222 |
|
\[ |
2223 |
|
\pp{\rho c_p T}{t}_{clearsky} = - {\partial \over \partial z} F(clearsky)_{LW}^{NET} , |
2224 |
|
\] |
2225 |
|
or |
2226 |
|
\[ |
2227 |
|
{\bf LWCLR} = \frac{g}{c_p \pi} {\partial \over \partial \sigma} F(clearsky)_{LW}^{NET} . |
2228 |
|
\] |
2229 |
|
|
2230 |
|
\noindent |
2231 |
|
where $g$ is the accelation due to gravity, |
2232 |
|
$c_p$ is the heat capacity of air at constant pressure, |
2233 |
|
and |
2234 |
|
\[ |
2235 |
|
F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow |
2236 |
|
\] |
2237 |
|
\\ |
2238 |
|
|
2239 |
|
|
2240 |
|
\noindent |
2241 |
|
{ \underline {TLW} Instantaneous temperature used as input to the Longwave |
2242 |
|
radiation subroutine (deg)} |
2243 |
|
\[ |
2244 |
|
{\bf TLW} = T(\lambda , \phi ,level, n) |
2245 |
|
\] |
2246 |
|
\noindent |
2247 |
|
where $T$ is the model temperature at the current time step $n$. |
2248 |
|
\\ |
2249 |
|
|
2250 |
|
|
2251 |
|
\noindent |
2252 |
|
{ \underline {SHLW} Instantaneous specific humidity used as input to |
2253 |
|
the Longwave radiation subroutine (kg/kg)} |
2254 |
|
\[ |
2255 |
|
{\bf SHLW} = q(\lambda , \phi , level , n) |
2256 |
|
\] |
2257 |
|
\noindent |
2258 |
|
where $q$ is the model specific humidity at the current time step $n$. |
2259 |
|
\\ |
2260 |
|
|
2261 |
|
|
2262 |
|
\noindent |
2263 |
|
{ \underline {OZLW} Instantaneous ozone used as input to |
2264 |
|
the Longwave radiation subroutine (kg/kg)} |
2265 |
|
\[ |
2266 |
|
{\bf OZLW} = {\rm OZ}(\lambda , \phi , level , n) |
2267 |
|
\] |
2268 |
|
\noindent |
2269 |
|
where $\rm OZ$ is the interpolated ozone data set from the climatological monthly |
2270 |
|
mean zonally averaged ozone data set. |
2271 |
|
\\ |
2272 |
|
|
2273 |
|
|
2274 |
|
\noindent |
2275 |
|
{ \underline {CLMOLW} Maximum Overlap cloud fraction used in LW Radiation ($0-1$) } |
2276 |
|
|
2277 |
|
\noindent |
2278 |
|
{\bf CLMOLW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
2279 |
|
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are |
2280 |
|
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
2281 |
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2282 |
|
\[ |
2283 |
|
{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi, level ) |
2284 |
|
\] |
2285 |
|
\\ |
2286 |
|
|
2287 |
|
|
2288 |
|
{ \underline {CLDTOT} Total cloud fraction used in LW and SW Radiation ($0-1$) } |
2289 |
|
|
2290 |
|
{\bf CLDTOT} is the time-averaged total cloud fraction that has been filled by the Relaxed |
2291 |
|
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Longwave and Shortwave |
2292 |
|
Radiation packages. |
2293 |
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2294 |
|
\[ |
2295 |
|
{\bf CLDTOT} = F_{RAS} + F_{LS} |
2296 |
|
\] |
2297 |
|
\\ |
2298 |
|
where $F_{RAS}$ is the time-averaged cloud fraction due to sub-grid scale convection, and $F_{LS}$ is the |
2299 |
|
time-averaged cloud fraction due to precipitating and non-precipitating large-scale moist processes. |
2300 |
|
\\ |
2301 |
|
|
2302 |
|
|
2303 |
|
\noindent |
2304 |
|
{ \underline {CLMOSW} Maximum Overlap cloud fraction used in SW Radiation ($0-1$) } |
2305 |
|
|
2306 |
|
\noindent |
2307 |
|
{\bf CLMOSW} is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed |
2308 |
|
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are |
2309 |
|
convective clouds whose radiative characteristics are assumed to be correlated in the vertical. |
2310 |
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2311 |
|
\[ |
2312 |
|
{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi, level ) |
2313 |
|
\] |
2314 |
|
\\ |
2315 |
|
|
2316 |
|
\noindent |
2317 |
|
{ \underline {CLROSW} Random Overlap cloud fraction used in SW Radiation ($0-1$) } |
2318 |
|
|
2319 |
|
\noindent |
2320 |
|
{\bf CLROSW} is the time-averaged random overlap cloud fraction that has been filled by the Relaxed |
2321 |
|
Arakawa/Schubert and Large-scale Convection schemes and will be used in the Shortwave |
2322 |
|
Radiation algorithm. These are |
2323 |
|
convective and large-scale clouds whose radiative characteristics are not |
2324 |
|
assumed to be correlated in the vertical. |
2325 |
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2326 |
|
\[ |
2327 |
|
{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi, level ) |
2328 |
|
\] |
2329 |
|
\\ |
2330 |
|
|
2331 |
|
\noindent |
2332 |
|
{ \underline {RADSWT} Incident Shortwave radiation at the top of the atmosphere ($Watts/m^2$) } |
2333 |
|
\[ |
2334 |
|
{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z |
2335 |
|
\] |
2336 |
|
\noindent |
2337 |
|
where $S_0$, is the extra-terrestial solar contant, |
2338 |
|
$R_a$ is the earth-sun distance in Astronomical Units, |
2339 |
|
and $cos \phi_z$ is the cosine of the zenith angle. |
2340 |
|
It should be noted that {\bf RADSWT}, as well as |
2341 |
|
{\bf OSR} and {\bf OSRCLR}, |
2342 |
|
are calculated at the top of the atmosphere (p=0 mb). However, the |
2343 |
|
{\bf OLR} and {\bf OLRCLR} diagnostics are currently |
2344 |
|
calculated at $p= p_{top}$ (0.0 mb for the GCM). |
2345 |
|
\\ |
2346 |
|
|
2347 |
|
\noindent |
2348 |
|
{ \underline {EVAP} Surface Evaporation ($mm/day$) } |
2349 |
|
|
2350 |
|
\noindent |
2351 |
|
The surface evaporation is a function of the gradient of moisture, the potential |
2352 |
|
evapotranspiration fraction and the eddy exchange coefficient: |
2353 |
|
\[ |
2354 |
|
{\bf EVAP} = \rho \beta K_{h} (q_{surface} - q_{Nrphys}) |
2355 |
|
\] |
2356 |
|
where $\rho$ = the atmospheric density at the surface, $\beta$ is the fraction of |
2357 |
|
the potential evapotranspiration actually evaporated ($\beta=1$ over oceans), $K_{h}$ is the |
2358 |
|
turbulent eddy exchange coefficient for heat and moisture at the surface in $m/sec$ and |
2359 |
|
$q{surface}$ and $q_{Nrphys}$ are the specific humidity at the surface (see diagnostic |
2360 |
|
number 34) and at the bottom model level, respectively. |
2361 |
|
\\ |
2362 |
|
|
2363 |
|
\noindent |
2364 |
|
{ \underline {DUDT} Total Zonal U-Wind Tendency ($m/sec/day$) } |
2365 |
|
|
2366 |
|
\noindent |
2367 |
|
{\bf DUDT} is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, |
2368 |
|
and Analysis forcing. |
2369 |
|
\[ |
2370 |
|
{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
2371 |
|
\] |
2372 |
|
\\ |
2373 |
|
|
2374 |
|
\noindent |
2375 |
|
{ \underline {DVDT} Total Zonal V-Wind Tendency ($m/sec/day$) } |
2376 |
|
|
2377 |
|
\noindent |
2378 |
|
{\bf DVDT} is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, |
2379 |
|
and Analysis forcing. |
2380 |
|
\[ |
2381 |
|
{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
2382 |
|
\] |
2383 |
|
\\ |
2384 |
|
|
2385 |
|
\noindent |
2386 |
|
{ \underline {DTDT} Total Temperature Tendency ($deg/day$) } |
2387 |
|
|
2388 |
|
\noindent |
2389 |
|
{\bf DTDT} is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, |
2390 |
|
and Analysis forcing. |
2391 |
|
\begin{eqnarray*} |
2392 |
|
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
2393 |
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
2394 |
|
\end{eqnarray*} |
2395 |
|
\\ |
2396 |
|
|
2397 |
|
\noindent |
2398 |
|
{ \underline {DQDT} Total Specific Humidity Tendency ($g/kg/day$) } |
2399 |
|
|
2400 |
|
\noindent |
2401 |
|
{\bf DQDT} is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, |
2402 |
|
and Analysis forcing. |
2403 |
|
\[ |
2404 |
|
{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes} |
2405 |
|
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
2406 |
|
\] |
2407 |
|
\\ |
2408 |
|
|
2409 |
|
\noindent |
2410 |
|
{ \underline {USTAR} Surface-Stress Velocity ($m/sec$) } |
2411 |
|
|
2412 |
|
\noindent |
2413 |
|
The surface stress velocity, or the friction velocity, is the wind speed at |
2414 |
|
the surface layer top impeded by the surface drag: |
2415 |
|
\[ |
2416 |
|
{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm} |
2417 |
|
C_u = {k \over {\psi_m} } |
2418 |
|
\] |
2419 |
|
|
2420 |
|
\noindent |
2421 |
|
$C_u$ is the non-dimensional surface drag coefficient (see diagnostic |
2422 |
|
number 10), and $W_s$ is the surface wind speed (see diagnostic number 28). |
2423 |
|
|
2424 |
|
\noindent |
2425 |
|
{ \underline {Z0} Surface Roughness Length ($m$) } |
2426 |
|
|
2427 |
|
\noindent |
2428 |
|
Over the land surface, the surface roughness length is interpolated to the local |
2429 |
|
time from the monthly mean data of Dorman and Sellers (1989). Over the ocean, |
2430 |
|
the roughness length is a function of the surface-stress velocity, $u_*$. |
2431 |
|
\[ |
2432 |
|
{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5 \over {u_*}} |
2433 |
|
\] |
2434 |
|
|
2435 |
|
\noindent |
2436 |
|
where the constants are chosen to interpolate between the reciprocal relation of |
2437 |
|
Kondo(1975) for weak winds, and the piecewise linear relation of Large and Pond(1981) |
2438 |
|
for moderate to large winds. |
2439 |
|
\\ |
2440 |
|
|
2441 |
|
\noindent |
2442 |
|
{ \underline {FRQTRB} Frequency of Turbulence ($0-1$) } |
2443 |
|
|
2444 |
|
\noindent |
2445 |
|
The fraction of time when turbulence is present is defined as the fraction of |
2446 |
|
time when the turbulent kinetic energy exceeds some minimum value, defined here |
2447 |
|
to be $0.005 \hspace{.1cm}m^2/sec^2$. When this criterion is met, a counter is |
2448 |
|
incremented. The fraction over the averaging interval is reported. |
2449 |
|
\\ |
2450 |
|
|
2451 |
|
\noindent |
2452 |
|
{ \underline {PBL} Planetary Boundary Layer Depth ($mb$) } |
2453 |
|
|
2454 |
|
\noindent |
2455 |
|
The depth of the PBL is defined by the turbulence parameterization to be the |
2456 |
|
depth at which the turbulent kinetic energy reduces to ten percent of its surface |
2457 |
|
value. |
2458 |
|
|
2459 |
|
\[ |
2460 |
|
{\bf PBL} = P_{PBL} - P_{surface} |
2461 |
|
\] |
2462 |
|
|
2463 |
|
\noindent |
2464 |
|
where $P_{PBL}$ is the pressure in $mb$ at which the turbulent kinetic energy |
2465 |
|
reaches one tenth of its surface value, and $P_s$ is the surface pressure. |
2466 |
|
\\ |
2467 |
|
|
2468 |
|
\noindent |
2469 |
|
{ \underline {SWCLR} Clear sky Heating Rate due to Shortwave Radiation ($deg/day$) } |
2470 |
|
|
2471 |
|
\noindent |
2472 |
|
The net Shortwave heating rate is calculated as the vertical divergence of the |
2473 |
|
net solar radiative fluxes. |
2474 |
|
The clear-sky and cloudy-sky shortwave fluxes are calculated separately. |
2475 |
|
For the clear-sky case, the shortwave fluxes and heating rates are computed with |
2476 |
|
both CLMO (maximum overlap cloud fraction) and |
2477 |
|
CLRO (random overlap cloud fraction) set to zero (see Section \ref{sec:fizhi:radcloud}). |
2478 |
|
The shortwave routine is then called a second time, for the cloudy-sky case, with the |
2479 |
|
true time-averaged cloud fractions CLMO |
2480 |
|
and CLRO being used. In all cases, a normalized incident shortwave flux is used as |
2481 |
|
input at the top of the atmosphere. |
2482 |
|
|
2483 |
|
\noindent |
2484 |
|
The heating rate due to Shortwave Radiation under clear skies is defined as: |
2485 |
|
\[ |
2486 |
|
\pp{\rho c_p T}{t} = - {\partial \over \partial z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT}, |
2487 |
|
\] |
2488 |
|
or |
2489 |
|
\[ |
2490 |
|
{\bf SWCLR} = \frac{g}{c_p } {\partial \over \partial p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} . |
2491 |
|
\] |
2492 |
|
|
2493 |
|
\noindent |
2494 |
|
where $g$ is the accelation due to gravity, |
2495 |
|
$c_p$ is the heat capacity of air at constant pressure, RADSWT is the true incident |
2496 |
|
shortwave radiation at the top of the atmosphere (See Diagnostic \#48), and |
2497 |
|
\[ |
2498 |
|
F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow |
2499 |
|
\] |
2500 |
|
\\ |
2501 |
|
|
2502 |
|
\noindent |
2503 |
|
{ \underline {OSR} Net upward Shortwave flux at the top of the model ($Watts/m^2$) } |
2504 |
|
\[ |
2505 |
|
{\bf OSR} = F_{SW,top}^{NET} |
2506 |
|
\] |
2507 |
|
\noindent |
2508 |
|
where top indicates the top of the first model layer used in the shortwave radiation |
2509 |
|
routine. |
2510 |
|
In the GCM, $p_{SW_{top}}$ = 0 mb. |
2511 |
|
\\ |
2512 |
|
|
2513 |
|
\noindent |
2514 |
|
{ \underline {OSRCLR} Net upward clearsky Shortwave flux at the top of the model ($Watts/m^2$) } |
2515 |
|
\[ |
2516 |
|
{\bf OSRCLR} = F(clearsky)_{SW,top}^{NET} |
2517 |
|
\] |
2518 |
|
\noindent |
2519 |
|
where top indicates the top of the first model layer used in the shortwave radiation |
2520 |
|
routine. |
2521 |
|
In the GCM, $p_{SW_{top}}$ = 0 mb. |
2522 |
|
\\ |
2523 |
|
|
2524 |
|
|
2525 |
|
\noindent |
2526 |
|
{ \underline {CLDMAS} Convective Cloud Mass Flux ($kg/m^2$) } |
2527 |
|
|
2528 |
|
\noindent |
2529 |
|
The amount of cloud mass moved per RAS timestep from all convective clouds is written: |
2530 |
|
\[ |
2531 |
|
{\bf CLDMAS} = \eta m_B |
2532 |
|
\] |
2533 |
|
where $\eta$ is the entrainment, normalized by the cloud base mass flux, and $m_B$ is |
2534 |
|
the cloud base mass flux. $m_B$ and $\eta$ are defined explicitly in Section \ref{sec:fizhi:mc}, the |
2535 |
|
description of the convective parameterization. |
2536 |
|
\\ |
2537 |
|
|
2538 |
|
|
2539 |
|
|
2540 |
|
\noindent |
2541 |
|
{ \underline {UAVE} Time-Averaged Zonal U-Wind ($m/sec$) } |
2542 |
|
|
2543 |
|
\noindent |
2544 |
|
The diagnostic {\bf UAVE} is simply the time-averaged Zonal U-Wind over |
2545 |
|
the {\bf NUAVE} output frequency. This is contrasted to the instantaneous |
2546 |
|
Zonal U-Wind which is archived on the Prognostic Output data stream. |
2547 |
|
\[ |
2548 |
|
{\bf UAVE} = u(\lambda, \phi, level , t) |
2549 |
|
\] |
2550 |
|
\\ |
2551 |
|
Note, {\bf UAVE} is computed and stored on the staggered C-grid. |
2552 |
|
\\ |
2553 |
|
|
2554 |
|
\noindent |
2555 |
|
{ \underline {VAVE} Time-Averaged Meridional V-Wind ($m/sec$) } |
2556 |
|
|
2557 |
|
\noindent |
2558 |
|
The diagnostic {\bf VAVE} is simply the time-averaged Meridional V-Wind over |
2559 |
|
the {\bf NVAVE} output frequency. This is contrasted to the instantaneous |
2560 |
|
Meridional V-Wind which is archived on the Prognostic Output data stream. |
2561 |
|
\[ |
2562 |
|
{\bf VAVE} = v(\lambda, \phi, level , t) |
2563 |
|
\] |
2564 |
|
\\ |
2565 |
|
Note, {\bf VAVE} is computed and stored on the staggered C-grid. |
2566 |
|
\\ |
2567 |
|
|
2568 |
|
\noindent |
2569 |
|
{ \underline {TAVE} Time-Averaged Temperature ($Kelvin$) } |
2570 |
|
|
2571 |
|
\noindent |
2572 |
|
The diagnostic {\bf TAVE} is simply the time-averaged Temperature over |
2573 |
|
the {\bf NTAVE} output frequency. This is contrasted to the instantaneous |
2574 |
|
Temperature which is archived on the Prognostic Output data stream. |
2575 |
|
\[ |
2576 |
|
{\bf TAVE} = T(\lambda, \phi, level , t) |
2577 |
|
\] |
2578 |
|
\\ |
2579 |
|
|
2580 |
|
\noindent |
2581 |
|
{ \underline {QAVE} Time-Averaged Specific Humidity ($g/kg$) } |
2582 |
|
|
2583 |
|
\noindent |
2584 |
|
The diagnostic {\bf QAVE} is simply the time-averaged Specific Humidity over |
2585 |
|
the {\bf NQAVE} output frequency. This is contrasted to the instantaneous |
2586 |
|
Specific Humidity which is archived on the Prognostic Output data stream. |
2587 |
|
\[ |
2588 |
|
{\bf QAVE} = q(\lambda, \phi, level , t) |
2589 |
|
\] |
2590 |
|
\\ |
2591 |
|
|
2592 |
|
\noindent |
2593 |
|
{ \underline {PAVE} Time-Averaged Surface Pressure - PTOP ($mb$) } |
2594 |
|
|
2595 |
|
\noindent |
2596 |
|
The diagnostic {\bf PAVE} is simply the time-averaged Surface Pressure - PTOP over |
2597 |
|
the {\bf NPAVE} output frequency. This is contrasted to the instantaneous |
2598 |
|
Surface Pressure - PTOP which is archived on the Prognostic Output data stream. |
2599 |
|
\begin{eqnarray*} |
2600 |
|
{\bf PAVE} & = & \pi(\lambda, \phi, level , t) \\ |
2601 |
|
& = & p_s(\lambda, \phi, level , t) - p_T |
2602 |
|
\end{eqnarray*} |
2603 |
|
\\ |
2604 |
|
|
2605 |
|
|
2606 |
|
\noindent |
2607 |
|
{ \underline {QQAVE} Time-Averaged Turbulent Kinetic Energy $(m/sec)^2$ } |
2608 |
|
|
2609 |
|
\noindent |
2610 |
|
The diagnostic {\bf QQAVE} is simply the time-averaged prognostic Turbulent Kinetic Energy |
2611 |
|
produced by the GCM Turbulence parameterization over |
2612 |
|
the {\bf NQQAVE} output frequency. This is contrasted to the instantaneous |
2613 |
|
Turbulent Kinetic Energy which is archived on the Prognostic Output data stream. |
2614 |
|
\[ |
2615 |
|
{\bf QQAVE} = qq(\lambda, \phi, level , t) |
2616 |
|
\] |
2617 |
|
\\ |
2618 |
|
Note, {\bf QQAVE} is computed and stored at the ``mass-point'' locations on the staggered C-grid. |
2619 |
|
\\ |
2620 |
|
|
2621 |
|
\noindent |
2622 |
|
{ \underline {SWGCLR} Net downward clearsky Shortwave flux at the surface ($Watts/m^2$) } |
2623 |
|
|
2624 |
|
\noindent |
2625 |
|
\begin{eqnarray*} |
2626 |
|
{\bf SWGCLR} & = & F(clearsky)_{SW,Nrphys+1}^{Net} \\ |
2627 |
|
& = & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow |
2628 |
|
\end{eqnarray*} |
2629 |
|
\noindent |
2630 |
|
\\ |
2631 |
|
where Nrphys+1 indicates the lowest model edge-level, or $p = p_{surf}$. |
2632 |
|
$F(clearsky){SW}^\downarrow$ is |
2633 |
|
the downward clearsky Shortwave flux and $F(clearsky)_{SW}^\uparrow$ is |
2634 |
|
the upward clearsky Shortwave flux. |
2635 |
|
\\ |
2636 |
|
|
2637 |
|
\noindent |
2638 |
|
{ \underline {DIABU} Total Diabatic Zonal U-Wind Tendency ($m/sec/day$) } |
2639 |
|
|
2640 |
|
\noindent |
2641 |
|
{\bf DIABU} is the total time-tendency of the Zonal U-Wind due to Diabatic processes |
2642 |
|
and the Analysis forcing. |
2643 |
|
\[ |
2644 |
|
{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis} |
2645 |
|
\] |
2646 |
|
\\ |
2647 |
|
|
2648 |
|
\noindent |
2649 |
|
{ \underline {DIABV} Total Diabatic Meridional V-Wind Tendency ($m/sec/day$) } |
2650 |
|
|
2651 |
|
\noindent |
2652 |
|
{\bf DIABV} is the total time-tendency of the Meridional V-Wind due to Diabatic processes |
2653 |
|
and the Analysis forcing. |
2654 |
|
\[ |
2655 |
|
{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis} |
2656 |
|
\] |
2657 |
|
\\ |
2658 |
|
|
2659 |
|
\noindent |
2660 |
|
{ \underline {DIABT} Total Diabatic Temperature Tendency ($deg/day$) } |
2661 |
|
|
2662 |
|
\noindent |
2663 |
|
{\bf DIABT} is the total time-tendency of Temperature due to Diabatic processes |
2664 |
|
and the Analysis forcing. |
2665 |
|
\begin{eqnarray*} |
2666 |
|
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
2667 |
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} |
2668 |
|
\end{eqnarray*} |
2669 |
|
\\ |
2670 |
|
If we define the time-tendency of Temperature due to Diabatic processes as |
2671 |
|
\begin{eqnarray*} |
2672 |
|
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\ |
2673 |
|
& + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} |
2674 |
|
\end{eqnarray*} |
2675 |
|
then, since there are no surface pressure changes due to Diabatic processes, we may write |
2676 |
|
\[ |
2677 |
|
\pp{T}{t}_{Diabatic} = {p^\kappa \over \pi }\pp{\pi \theta}{t}_{Diabatic} |
2678 |
|
\] |
2679 |
|
where $\theta = T/p^\kappa$. Thus, {\bf DIABT} may be written as |
2680 |
|
\[ |
2681 |
|
{\bf DIABT} = {p^\kappa \over \pi } \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right) |
2682 |
|
\] |
2683 |
|
\\ |
2684 |
|
|
2685 |
|
\noindent |
2686 |
|
{ \underline {DIABQ} Total Diabatic Specific Humidity Tendency ($g/kg/day$) } |
2687 |
|
|
2688 |
|
\noindent |
2689 |
|
{\bf DIABQ} is the total time-tendency of Specific Humidity due to Diabatic processes |
2690 |
|
and the Analysis forcing. |
2691 |
|
\[ |
2692 |
|
{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis} |
2693 |
|
\] |
2694 |
|
If we define the time-tendency of Specific Humidity due to Diabatic processes as |
2695 |
|
\[ |
2696 |
|
\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} |
2697 |
|
\] |
2698 |
|
then, since there are no surface pressure changes due to Diabatic processes, we may write |
2699 |
|
\[ |
2700 |
|
\pp{q}{t}_{Diabatic} = {1 \over \pi }\pp{\pi q}{t}_{Diabatic} |
2701 |
|
\] |
2702 |
|
Thus, {\bf DIABQ} may be written as |
2703 |
|
\[ |
2704 |
|
{\bf DIABQ} = {1 \over \pi } \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right) |
2705 |
|
\] |
2706 |
|
\\ |
2707 |
|
|
2708 |
|
\noindent |
2709 |
|
{ \underline {VINTUQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
2710 |
|
|
2711 |
|
\noindent |
2712 |
|
The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating |
2713 |
|
$u q$ over the depth of the atmosphere at each model timestep, |
2714 |
|
and dividing by the total mass of the column. |
2715 |
|
\[ |
2716 |
|
{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz } { \int_{surf}^{top} \rho dz } |
2717 |
|
\] |
2718 |
|
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2719 |
|
\[ |
2720 |
|
{\bf VINTUQ} = { \int_0^1 u q dp } |
2721 |
|
\] |
2722 |
|
\\ |
2723 |
|
|
2724 |
|
|
2725 |
|
\noindent |
2726 |
|
{ \underline {VINTVQ} Vertically Integrated Moisture Flux ($m/sec \cdot g/kg$) } |
2727 |
|
|
2728 |
|
\noindent |
2729 |
|
The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating |
2730 |
|
$v q$ over the depth of the atmosphere at each model timestep, |
2731 |
|
and dividing by the total mass of the column. |
2732 |
|
\[ |
2733 |
|
{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz } { \int_{surf}^{top} \rho dz } |
2734 |
|
\] |
2735 |
|
Using $\rho \delta z = -{\delta p \over g} = - {1 \over g} \delta p$, we have |
2736 |
|
\[ |
2737 |
|
{\bf VINTVQ} = { \int_0^1 v q dp } |
2738 |
|
\] |
2739 |
|
\\ |
2740 |
|
|
2741 |
|
|
2742 |
|
\noindent |
2743 |
|
{ \underline {VINTUT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2744 |
|
|
2745 |
|
\noindent |
2746 |
|
The vertically integrated heat flux due to the zonal u-wind is obtained by integrating |
2747 |
|
$u T$ over the depth of the atmosphere at each model timestep, |
2748 |
|
and dividing by the total mass of the column. |
2749 |
|
\[ |
2750 |
|
{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz } { \int_{surf}^{top} \rho dz } |
2751 |
|
\] |
2752 |
|
Or, |
2753 |
|
\[ |
2754 |
|
{\bf VINTUT} = { \int_0^1 u T dp } |
2755 |
|
\] |
2756 |
|
\\ |
2757 |
|
|
2758 |
|
\noindent |
2759 |
|
{ \underline {VINTVT} Vertically Integrated Heat Flux ($m/sec \cdot deg$) } |
2760 |
|
|
2761 |
|
\noindent |
2762 |
|
The vertically integrated heat flux due to the meridional v-wind is obtained by integrating |
2763 |
|
$v T$ over the depth of the atmosphere at each model timestep, |
2764 |
|
and dividing by the total mass of the column. |
2765 |
|
\[ |
2766 |
|
{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz } { \int_{surf}^{top} \rho dz } |
2767 |
|
\] |
2768 |
|
Using $\rho \delta z = -{\delta p \over g} $, we have |
2769 |
|
\[ |
2770 |
|
{\bf VINTVT} = { \int_0^1 v T dp } |
2771 |
|
\] |
2772 |
|
\\ |
2773 |
|
|
2774 |
|
\noindent |
2775 |
|
{ \underline {CLDFRC} Total 2-Dimensional Cloud Fracton ($0-1$) } |
2776 |
|
|
2777 |
|
If we define the |
2778 |
|
time-averaged random and maximum overlapped cloudiness as CLRO and |
2779 |
|
CLMO respectively, then the probability of clear sky associated |
2780 |
|
with random overlapped clouds at any level is (1-CLRO) while the probability of |
2781 |
|
clear sky associated with maximum overlapped clouds at any level is (1-CLMO). |
2782 |
|
The total clear sky probability is given by (1-CLRO)*(1-CLMO), thus |
2783 |
|
the total cloud fraction at each level may be obtained by |
2784 |
|
1-(1-CLRO)*(1-CLMO). |
2785 |
|
|
2786 |
|
At any given level, we may define the clear line-of-site probability by |
2787 |
|
appropriately accounting for the maximum and random overlap |
2788 |
|
cloudiness. The clear line-of-site probability is defined to be |
2789 |
|
equal to the product of the clear line-of-site probabilities |
2790 |
|
associated with random and maximum overlap cloudiness. The clear |
2791 |
|
line-of-site probability $C(p,p^{\prime})$ associated with maximum overlap clouds, |
2792 |
|
from the current pressure $p$ |
2793 |
|
to the model top pressure, $p^{\prime} = p_{top}$, or the model surface pressure, $p^{\prime} = p_{surf}$, |
2794 |
|
is simply 1.0 minus the largest maximum overlap cloud value along the |
2795 |
|
line-of-site, ie. |
2796 |
|
|
2797 |
|
$$1-MAX_p^{p^{\prime}} \left( CLMO_p \right)$$ |
2798 |
|
|
2799 |
|
Thus, even in the time-averaged sense it is assumed that the |
2800 |
|
maximum overlap clouds are correlated in the vertical. The clear |
2801 |
|
line-of-site probability associated with random overlap clouds is |
2802 |
|
defined to be the product of the clear sky probabilities at each |
2803 |
|
level along the line-of-site, ie. |
2804 |
|
|
2805 |
|
$$\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2806 |
|
|
2807 |
|
The total cloud fraction at a given level associated with a line- |
2808 |
|
of-site calculation is given by |
2809 |
|
|
2810 |
|
$$1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right) |
2811 |
|
\prod_p^{p^{\prime}} \left( 1-CLRO_p \right)$$ |
2812 |
|
|
2813 |
|
|
2814 |
|
\noindent |
2815 |
|
The 2-dimensional net cloud fraction as seen from the top of the |
2816 |
|
atmosphere is given by |
2817 |
|
\[ |
2818 |
|
{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right) |
2819 |
|
\prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right) |
2820 |
|
\] |
2821 |
|
\\ |
2822 |
|
For a complete description of cloud/radiative interactions, see Section \ref{sec:fizhi:radcloud}. |
2823 |
|
|
2824 |
|
|
2825 |
|
\noindent |
2826 |
|
{ \underline {QINT} Total Precipitable Water ($gm/cm^2$) } |
2827 |
|
|
2828 |
|
\noindent |
2829 |
|
The Total Precipitable Water is defined as the vertical integral of the specific humidity, |
2830 |
|
given by: |
2831 |
|
\begin{eqnarray*} |
2832 |
|
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\ |
2833 |
|
& = & {\pi \over g} \int_0^1 q dp |
2834 |
|
\end{eqnarray*} |
2835 |
|
where we have used the hydrostatic relation |
2836 |
|
$\rho \delta z = -{\delta p \over g} $. |
2837 |
|
\\ |
2838 |
|
|
2839 |
|
|
2840 |
|
\noindent |
2841 |
|
{ \underline {U2M} Zonal U-Wind at 2 Meter Depth ($m/sec$) } |
2842 |
|
|
2843 |
|
\noindent |
2844 |
|
The u-wind at the 2-meter depth is determined from the similarity theory: |
2845 |
|
\[ |
2846 |
|
{\bf U2M} = {u_* \over k} \psi_{m_{2m}} {u_{sl} \over {W_s}} = |
2847 |
|
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}u_{sl} |
2848 |
|
\] |
2849 |
|
|
2850 |
|
\noindent |
2851 |
|
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2852 |
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2853 |
|
is above two meters, ${\bf U2M}$ is undefined. |
2854 |
|
\\ |
2855 |
|
|
2856 |
|
\noindent |
2857 |
|
{ \underline {V2M} Meridional V-Wind at 2 Meter Depth ($m/sec$) } |
2858 |
|
|
2859 |
|
\noindent |
2860 |
|
The v-wind at the 2-meter depth is a determined from the similarity theory: |
2861 |
|
\[ |
2862 |
|
{\bf V2M} = {u_* \over k} \psi_{m_{2m}} {v_{sl} \over {W_s}} = |
2863 |
|
{ \psi_{m_{2m}} \over {\psi_{m_{sl}} }}v_{sl} |
2864 |
|
\] |
2865 |
|
|
2866 |
|
\noindent |
2867 |
|
where $\psi_m(2m)$ is the non-dimensional wind shear at two meters, and the subscript |
2868 |
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2869 |
|
is above two meters, ${\bf V2M}$ is undefined. |
2870 |
|
\\ |
2871 |
|
|
2872 |
|
\noindent |
2873 |
|
{ \underline {T2M} Temperature at 2 Meter Depth ($deg \hspace{.1cm} K$) } |
2874 |
|
|
2875 |
|
\noindent |
2876 |
|
The temperature at the 2-meter depth is a determined from the similarity theory: |
2877 |
|
\[ |
2878 |
|
{\bf T2M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) = |
2879 |
|
P^{\kappa}(\theta_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2880 |
|
(\theta_{sl} - \theta_{surf})) |
2881 |
|
\] |
2882 |
|
where: |
2883 |
|
\[ |
2884 |
|
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2885 |
|
\] |
2886 |
|
|
2887 |
|
\noindent |
2888 |
|
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2889 |
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2890 |
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2891 |
|
is above two meters, ${\bf T2M}$ is undefined. |
2892 |
|
\\ |
2893 |
|
|
2894 |
|
\noindent |
2895 |
|
{ \underline {Q2M} Specific Humidity at 2 Meter Depth ($g/kg$) } |
2896 |
|
|
2897 |
|
\noindent |
2898 |
|
The specific humidity at the 2-meter depth is determined from the similarity theory: |
2899 |
|
\[ |
2900 |
|
{\bf Q2M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) = |
2901 |
|
P^{\kappa}(q_{surf} + { {\psi_{h_{2m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2902 |
|
(q_{sl} - q_{surf})) |
2903 |
|
\] |
2904 |
|
where: |
2905 |
|
\[ |
2906 |
|
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2907 |
|
\] |
2908 |
|
|
2909 |
|
\noindent |
2910 |
|
where $\psi_h(2m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2911 |
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2912 |
|
$sl$ refers to the height of the top of the surface layer. If the roughness height |
2913 |
|
is above two meters, ${\bf Q2M}$ is undefined. |
2914 |
|
\\ |
2915 |
|
|
2916 |
|
\noindent |
2917 |
|
{ \underline {U10M} Zonal U-Wind at 10 Meter Depth ($m/sec$) } |
2918 |
|
|
2919 |
|
\noindent |
2920 |
|
The u-wind at the 10-meter depth is an interpolation between the surface wind |
2921 |
|
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2922 |
|
at the two levels: |
2923 |
|
\[ |
2924 |
|
{\bf U10M} = {u_* \over k} \psi_{m_{10m}} {u_{sl} \over {W_s}} = |
2925 |
|
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}u_{sl} |
2926 |
|
\] |
2927 |
|
|
2928 |
|
\noindent |
2929 |
|
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2930 |
|
$sl$ refers to the height of the top of the surface layer. |
2931 |
|
\\ |
2932 |
|
|
2933 |
|
\noindent |
2934 |
|
{ \underline {V10M} Meridional V-Wind at 10 Meter Depth ($m/sec$) } |
2935 |
|
|
2936 |
|
\noindent |
2937 |
|
The v-wind at the 10-meter depth is an interpolation between the surface wind |
2938 |
|
and the model lowest level wind using the ratio of the non-dimensional wind shear |
2939 |
|
at the two levels: |
2940 |
|
\[ |
2941 |
|
{\bf V10M} = {u_* \over k} \psi_{m_{10m}} {v_{sl} \over {W_s}} = |
2942 |
|
{ \psi_{m_{10m}} \over {\psi_{m_{sl}} }}v_{sl} |
2943 |
|
\] |
2944 |
|
|
2945 |
|
\noindent |
2946 |
|
where $\psi_m(10m)$ is the non-dimensional wind shear at ten meters, and the subscript |
2947 |
|
$sl$ refers to the height of the top of the surface layer. |
2948 |
|
\\ |
2949 |
|
|
2950 |
|
\noindent |
2951 |
|
{ \underline {T10M} Temperature at 10 Meter Depth ($deg \hspace{.1cm} K$) } |
2952 |
|
|
2953 |
|
\noindent |
2954 |
|
The temperature at the 10-meter depth is an interpolation between the surface potential |
2955 |
|
temperature and the model lowest level potential temperature using the ratio of the |
2956 |
|
non-dimensional temperature gradient at the two levels: |
2957 |
|
\[ |
2958 |
|
{\bf T10M} = P^{\kappa} ({\theta* \over k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) = |
2959 |
|
P^{\kappa}(\theta_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2960 |
|
(\theta_{sl} - \theta_{surf})) |
2961 |
|
\] |
2962 |
|
where: |
2963 |
|
\[ |
2964 |
|
\theta_* = - { (\overline{w^{\prime}\theta^{\prime}}) \over {u_*} } |
2965 |
|
\] |
2966 |
|
|
2967 |
|
\noindent |
2968 |
|
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2969 |
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2970 |
|
$sl$ refers to the height of the top of the surface layer. |
2971 |
|
\\ |
2972 |
|
|
2973 |
|
\noindent |
2974 |
|
{ \underline {Q10M} Specific Humidity at 10 Meter Depth ($g/kg$) } |
2975 |
|
|
2976 |
|
\noindent |
2977 |
|
The specific humidity at the 10-meter depth is an interpolation between the surface specific |
2978 |
|
humidity and the model lowest level specific humidity using the ratio of the |
2979 |
|
non-dimensional temperature gradient at the two levels: |
2980 |
|
\[ |
2981 |
|
{\bf Q10M} = P^{\kappa} ({q_* \over k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) = |
2982 |
|
P^{\kappa}(q_{surf} + { {\psi_{h_{10m}}+\psi_g} \over {{\psi_{h_{sl}}+\psi_g}} } |
2983 |
|
(q_{sl} - q_{surf})) |
2984 |
|
\] |
2985 |
|
where: |
2986 |
|
\[ |
2987 |
|
q_* = - { (\overline{w^{\prime}q^{\prime}}) \over {u_*} } |
2988 |
|
\] |
2989 |
|
|
2990 |
|
\noindent |
2991 |
|
where $\psi_h(10m)$ is the non-dimensional temperature gradient at two meters, $\psi_g$ is |
2992 |
|
the non-dimensional temperature gradient in the viscous sublayer, and the subscript |
2993 |
|
$sl$ refers to the height of the top of the surface layer. |
2994 |
|
\\ |
2995 |
|
|
2996 |
|
\noindent |
2997 |
|
{ \underline {DTRAIN} Cloud Detrainment Mass Flux ($kg/m^2$) } |
2998 |
|
|
2999 |
|
The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written: |
3000 |
|
\[ |
3001 |
|
{\bf DTRAIN} = \eta_{r_D}m_B |
3002 |
|
\] |
3003 |
|
\noindent |
3004 |
|
where $r_D$ is the detrainment level, |
3005 |
|
$m_B$ is the cloud base mass flux, and $\eta$ |
3006 |
|
is the entrainment, defined in Section \ref{sec:fizhi:mc}. |
3007 |
|
\\ |
3008 |
|
|
3009 |
|
\noindent |
3010 |
|
{ \underline {QFILL} Filling of negative Specific Humidity ($g/kg/day$) } |
3011 |
|
|
3012 |
|
\noindent |
3013 |
|
Due to computational errors associated with the numerical scheme used for |
3014 |
|
the advection of moisture, negative values of specific humidity may be generated. The |
3015 |
|
specific humidity is checked for negative values after every dynamics timestep. If negative |
3016 |
|
values have been produced, a filling algorithm is invoked which redistributes moisture from |
3017 |
|
below. Diagnostic {\bf QFILL} is equal to the net filling needed |
3018 |
|
to eliminate negative specific humidity, scaled to a per-day rate: |
3019 |
|
\[ |
3020 |
|
{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial} |
3021 |
|
\] |
3022 |
|
where |
3023 |
|
\[ |
3024 |
|
q^{n+1} = (\pi q)^{n+1} / \pi^{n+1} |
3025 |
|
\] |
3026 |
|
|
3027 |
|
|
3028 |
\subsection{Key subroutines, parameters and files} |
\subsection{Key subroutines, parameters and files} |
3029 |
|
|
3030 |
\subsection{Dos and donts} |
\subsection{Dos and donts} |