/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Diff of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by afe, Wed Mar 17 19:49:22 2004 UTC revision 1.17 by afe, Fri Mar 19 21:25:45 2004 UTC
# Line 16  Line 16 
16    
17  \subsection{Introduction}  \subsection{Introduction}
18    
19  The \texttt{exch2} package extends the original cubed  The \texttt{exch2} package extends the original cubed sphere topology
20  sphere topology configuration to allow more flexible domain  configuration to allow more flexible domain decomposition and
21  decomposition and parallelization.  Cube faces (also called  parallelization.  Cube faces (also called subdomains) may be divided
22  subdomains) may be divided into any number of tiles that divide evenly  into any number of tiles that divide evenly into the grid point
23  into the grid point dimensions of the subdomain.  Furthermore, the  dimensions of the subdomain.  Furthermore, the tiles can run on
24  individual tiles can run on separate processors in different  separate processors individually or in groups, which provides for
25  combinations, and whether exchanges between particular tiles occur  manual compile-time load balancing across a relatively arbitrary
26  between different processors is determined at runtime.  This  number of processors. \\
 flexibility provides for manual compile-time load balancing across a  
 relatively arbitrary number of processors. \\  
27    
28  The exchange parameters are declared in  The exchange parameters are declared in
29  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}  \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
# Line 55  $\bullet$ The exch2 package is included Line 53  $\bullet$ The exch2 package is included
53    details. \\    details. \\
54    
55  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and  $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56    \file{w2\_e2setup.F} must reside in a directory containing code    \file{w2\_e2setup.F} must reside in a directory containing files
57    linked when \file{genmake2} runs.  The safest place to put these    symbolically linked when \file{genmake2} runs.  The safest place to
58    is the directory indicated in the \code{-mods=DIR} command line    put these is the directory indicated in the \code{-mods=DIR} command
59    modifier (typically \file{../code}), or the build directory.  The    line modifier (typically \file{../code}), or the build directory.
60    default versions of these files reside in \file{pkg/exch2} and are    The default versions of these files reside in \file{pkg/exch2} and
61    linked automatically if no other versions exist elsewhere in the    are linked automatically if no other versions exist elsewhere in the
62    link path, but they should be left untouched to avoid breaking    build path, but they should be left untouched to avoid breaking
63    configurations other than the one you intend to modify.\\    configurations other than the one you intend to modify.\\
64    
65  $\bullet$ Files containing grid parameters, named  $\bullet$ Files containing grid parameters, named
# Line 84  $\bullet$ As always when compiling MITgc Line 82  $\bullet$ As always when compiling MITgc
82    Section \ref{sect:specifying_a_decomposition}    Section \ref{sect:specifying_a_decomposition}
83    \sectiontitle{Specifying a decomposition}.\\    \sectiontitle{Specifying a decomposition}.\\
84    
85  As of the time of writing the following examples use exch2 and may be  At the time of this writing the following examples use exch2 and may
86  used for guidance:  be used for guidance:
87    
88  \begin{verbatim}  \begin{verbatim}
89  verification/adjust_nlfs.cs-32x32x1  verification/adjust_nlfs.cs-32x32x1
# Line 129  The parameters \code{tnx} and \code{tny} Line 127  The parameters \code{tnx} and \code{tny}
127  the tiles into which the subdomains are decomposed, and must evenly  the tiles into which the subdomains are decomposed, and must evenly
128  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.  divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
129  The result is a rectangular tiling of the subdomain.  Figure  The result is a rectangular tiling of the subdomain.  Figure
130  \ref{fig:24tile} shows one possible topology for a twentyfour-tile  \ref{fig:24tile} shows one possible topology for a twenty-four-tile
131  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\  cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
132    
133  \begin{figure}  \begin{figure}
# Line 140  cube, and figure \ref{fig:12tile} shows Line 138  cube, and figure \ref{fig:12tile} shows
138  \end{center}  \end{center}
139    
140  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain  \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
141  divided into six 32$\times$32 subdomains, each of which is divided into four tiles  divided into six 32$\times$32 subdomains, each of which is divided
142  (\code{tnx=16, tny=16}) for a total of twentyfour tiles.  into four tiles (\code{tnx=16, tny=16}) for a total of twenty-four
143  } \label{fig:24tile}  tiles.  } \label{fig:24tile}
144  \end{figure}  \end{figure}
145    
146  \begin{figure}  \begin{figure}
# Line 206  levels in the model.\\ Line 204  levels in the model.\\
204  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},  The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
205  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of  \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
206  tiles and how they are distributed on processors.  When using exch2,  tiles and how they are distributed on processors.  When using exch2,
207  the tiles are stored in single dimension, and so  the tiles are stored in a single dimension, and so
208  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as  \code{\varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
209  configured by exch2 cannot be split up accross processors without  configured by exch2 cannot be split up accross processors without
210  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\  regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
# Line 237  one processor: \\ Line 235  one processor: \\
235       &           Nr  =   5)       &           Nr  =   5)
236  \end{verbatim}  \end{verbatim}
237    
238  The following is an example for the twentyfour-tile topology in figure  The following is an example for the twenty-four-tile topology in
239  \ref{fig:24tile} running on six processors:  figure \ref{fig:24tile} running on six processors:
240    
241  \begin{verbatim}  \begin{verbatim}
242        PARAMETER (        PARAMETER (
# Line 262  The following is an example for the twen Line 260  The following is an example for the twen
260  \subsection{Key Variables}  \subsection{Key Variables}
261    
262  The descriptions of the variables are divided up into scalars,  The descriptions of the variables are divided up into scalars,
263  one-dimensional arrays indexed to the tile number, and two and three  one-dimensional arrays indexed to the tile number, and two and
264  dimensional arrays indexed to tile number and neighboring tile.  This  three-dimensional arrays indexed to tile number and neighboring tile.
265  division reflects the functionality of these variables: The  This division reflects the functionality of these variables: The
266  scalars are common to every part of the topology, the tile-indexed  scalars are common to every part of the topology, the tile-indexed
267  arrays to individual tiles, and the arrays indexed by tile and  arrays to individual tiles, and the arrays indexed by tile and
268  neighbor to relationships between tiles and their neighbors. \\  neighbor to relationships between tiles and their neighbors. \\
# Line 281  generated by \file{driver.m}.\\ Line 279  generated by \file{driver.m}.\\
279  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}  The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
280  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number  and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
281  of tiles in the $x$ and $y$ global indices.  For example, the default  of tiles in the $x$ and $y$ global indices.  For example, the default
282  setup of six tiles (Fig. \ref{fig:6tile}) has \code{exch2\_domain\_nxt=6} and  setup of six tiles (Fig. \ref{fig:6tile}) has
283  \code{exch2\_domain\_nyt=1}.  A topology of twenty-four square tiles,  \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}.  A
284  four per subdomain (as in figure \ref{fig:24tile}), will have  topology of twenty-four square tiles, four per subdomain (as in figure
285  \code{exch2\_domain\_nxt=12} and \code{exch2\_domain\_nyt=2}.  Note  \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
286  that these parameters express the tile layout to allow global data  \code{exch2\_domain\_nyt=2}.  Note that these parameters express the
287  files that are tile-layout-neutral and have no bearing on the internal  tile layout to allow global data files that are tile-layout-neutral
288  storage of the arrays.  The tiles are internally stored in a range  and have no bearing on the internal storage of the arrays.  The tiles
289  from \code{(1:\varlink{bi}{bi})} the $x$ axis, and $y$ axis variable  are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
290  \varlink{bj}{bj} is generally ignored within the package. \\  $x$ axis, and the $y$ axis variable \varlink{bj}{bj} generally is
291    ignored within the package. \\
292    
293  \subsubsection{Arrays Indexed to Tile Number}  \subsubsection{Arrays Indexed to Tile Number}
294    
295  The following arrays are of length \code{NTILES}, are indexed to the  The following arrays are of length \code{NTILES} and are indexed to
296  tile number, and the indices are omitted in their descriptions. \\  the tile number, which is indicated in the diagrams with the notation
297    \textsf{t}$n$.  The indices are omitted in the descriptions. \\
298    
299  The arrays \varlink{exch2\_tnx}{exch2_tnx} and  The arrays \varlink{exch2\_tnx}{exch2_tnx} and
300  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of  \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
# Line 310  determined by the arrays \varlink{exch2\ Line 310  determined by the arrays \varlink{exch2\
310  relate the location of the edges of different tiles to each other.  As  relate the location of the edges of different tiles to each other.  As
311  an example, in the default six-tile topology (Fig. \ref{fig:6tile})  an example, in the default six-tile topology (Fig. \ref{fig:6tile})
312  each index in these arrays is set to \code{0} since a tile occupies  each index in these arrays is set to \code{0} since a tile occupies
313  its entire subdomain.  The twentyfour-tile case discussed above will  its entire subdomain.  The twenty-four-tile case discussed above will
314  have values of \code{0} or \code{16}, depending on the quadrant the  have values of \code{0} or \code{16}, depending on the quadrant the
315  tile falls within the subdomain.  The elements of the arrays  tile falls within the subdomain.  The elements of the arrays
316  \varlink{exch2\_txglobalo}{exch2_txglobalo} and  \varlink{exch2\_txglobalo}{exch2_txglobalo} and
317  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to  \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
318  \varlink{exch2\_tbasex}{exch2_tbasex} and  \varlink{exch2\_tbasex}{exch2_tbasex} and
319  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the  \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
320  global address space, similar to that used by global files. \\  global address space, similar to that used by global output and input
321    files. \\
322    
323  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of  The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
324  the subdomain of each tile, in a range \code{(1:6)} in the case of the  the subdomain of each tile, in a range \code{(1:6)} in the case of the
325  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in  standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
326  figures \ref{fig:12tile} and  figures \ref{fig:12tile} and
327  \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}  \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
328  contains a count of how many neighboring tiles each tile has, and is  contains a count of the neighboring tiles each tile has, and is used
329  used for setting bounds for looping over neighboring tiles.  for setting bounds for looping over neighboring tiles.
330  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each  \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
331  tile, and is used in interprocess communication.  \\  tile, and is used in interprocess communication.  \\
332    
# Line 334  The arrays \varlink{exch2\_isWedge}{exch Line 335  The arrays \varlink{exch2\_isWedge}{exch
335  \varlink{exch2\_isEedge}{exch2_isEedge},  \varlink{exch2\_isEedge}{exch2_isEedge},
336  \varlink{exch2\_isSedge}{exch2_isSedge}, and  \varlink{exch2\_isSedge}{exch2_isSedge}, and
337  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the  \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
338  indexed tile lies on the edge of a subdomain, \code{0} if not.  The  indexed tile lies on the respective edge of a subdomain, \code{0} if
339  values are used within the topology generator to determine the  not.  The values are used within the topology generator to determine
340  orientation of neighboring tiles, and to indicate whether a tile lies  the orientation of neighboring tiles, and to indicate whether a tile
341  on the corner of a subdomain.  The latter case requires special  lies on the corner of a subdomain.  The latter case requires special
342  exchange and numerical handling for the singularities at the eight  exchange and numerical handling for the singularities at the eight
343  corners of the cube. \\  corners of the cube. \\
344    
345    
346  \subsubsection{Arrays Indexed to Tile Number and Neighbor}  \subsubsection{Arrays Indexed to Tile Number and Neighbor}
347    
348  The following arrays are all of size  The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
349  \code{MAX\_NEIGHBOURS}$\times$\code{NTILES} and describe the  \code{NTILES} and describe the orientations between the the tiles. \\
 orientations between the the tiles. \\  
350    
351  The array \code{exch2\_neighbourId(a,T)} holds the tile number  The array \code{exch2\_neighbourId(a,T)} holds the tile number
352  \code{Tn} for each of the tile number \code{T}'s neighboring tiles  \code{Tn} for each of the tile number \code{T}'s neighboring tiles
353  \code{a}.  The neighbor tiles are indexed \code{(1:MAX\_NEIGHBOURS)}  \code{a}.  The neighbor tiles are indexed
354  in the order right to left on the north then south edges, and then top  \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
355  to bottom on the east and west edges.  Maybe throw in a fig here, eh?  north then south edges, and then top to bottom on the east then west
356  \\  edges.  \\
357    
358  \sloppy   The \code{exch2\_opposingSend\_record(a,T)} array holds the
359  The \code{exch2\_opposingSend\_record(a,T)} array holds the index  index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
360  \code{b} in \texttt{exch2\_neighbourId(b,Tn)} that holds the tile  that holds the tile number \code{T}, given
361  number \code{T}.  In other words,  \code{Tn=exch2\_neighborId(a,T)}.  In other words,
362  \begin{verbatim}  \begin{verbatim}
363     exch2_neighbourId( exch2_opposingSend_record(a,T),     exch2_neighbourId( exch2_opposingSend_record(a,T),
364                        exch2_neighbourId(a,T) ) = T                        exch2_neighbourId(a,T) ) = T
# Line 366  number \code{T}.  In other words, Line 366  number \code{T}.  In other words,
366  This provides a back-reference from the neighbor tiles. \\  This provides a back-reference from the neighbor tiles. \\
367    
368  The arrays \varlink{exch2\_pi}{exch2_pi} and  The arrays \varlink{exch2\_pi}{exch2_pi} and
369  \varlink{exch2\_pj}{exch2_pj} specify the transformations of variables  \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
370  in exchanges between the neighboring tiles.  These transformations are  in exchanges between the neighboring tiles.  These transformations are
371  necessary in exchanges between subdomains because a physical vector  necessary in exchanges between subdomains because the array index in
372  component in one direction may map to one in a different direction in  one dimension may map to the other index in an adjacent subdomain, and
373  an adjacent subdomain, and may be have its indexing reversed. This  may be have its indexing reversed. This swapping arises from the
374  swapping arises from the ``folding'' of two-dimensional arrays into a  ``folding'' of two-dimensional arrays into a three-dimensional
375  three-dimensional cube.  cube. \\
376    
377  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}  The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
378  are the neighbor ID \code{N} and the tile number \code{T} as explained  are the neighbor ID \code{N} and the tile number \code{T} as explained
379  above, plus a vector of length 2 containing transformation factors  above, plus a vector of length \code{2} containing transformation
380  \code{t}.  The first element of the transformation vector indicates  factors \code{t}.  The first element of the transformation vector
381  the factor \code{t} by which variables representing the same  holds the factor to multiply the index in the same axis, and the
382  \emph{physical} vector component of a tile \code{T} will be multiplied  second element holds the the same for the orthogonal index.  To
383  in exchanges with neighbor \code{N}, and the second element indicates  clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
384  the transform to the physical vector in the other direction.  To  index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
385  clarify (hopefully), \code{exch2\_pi(1,N,T)} holds the transform of  \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
386  the $i$ component of a vector variable in tile \code{T} to the $i$  $x$ index to the neighbor \code{N}'s $y$ index. \\
 component of tile \code{T}'s neighbor \code{N}, and  
 \code{exch2\_pi(2,N,T)} holds the transform of \code{T}'s $i$  
 components to the neighbor \code{N}'s $j$ component. \\  
387    
388  Under the current cube topology, one of the two elements of  One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
389  \code{exch2\_pi} or \code{exch2\_pj} for a given tile \code{T} and  given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
390  neighbor \code{N} will be \code{0}, reflecting the fact that the two  the fact that the two axes are orthogonal.  The other element will be
391  vector components are orthogonal.  The other element will be \code{1}  \code{1} or \code{-1}, depending on whether the axes are indexed in
392  or \code{-1}, depending on whether the components are indexed in the  the same or opposite directions.  For example, the transform vector of
393  same or opposite directions.  For example, the transform vector of the  the arrays for all tile neighbors on the same subdomain will be
 arrays for all tile neighbors on the same subdomain will be  
394  \code{(1,0)}, since all tiles on the same subdomain are oriented  \code{(1,0)}, since all tiles on the same subdomain are oriented
395  identically.  A vector direction that corresponds to the orthogonal  identically.  An axis that corresponds to the orthogonal dimension
396  dimension with the same index direction in a particular tile-neighbor  with the same index direction in a particular tile-neighbor
397  orientation will have \code{(0,1)}, whereas those in the opposite  orientation will have \code{(0,1)}.  Those in the opposite index
398  index direction will have \code{(0,-1)}. \\  direction will have \code{(0,-1)} in order to reverse the ordering. \\
399    
400    The arrays \varlink{exch2\_oi}{exch2_oi},
 \varlink{exch2\_oi}{exch2_oi},  
401  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and  \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
402  \varlink{exch2\_oj\_f}{exch2_oj_f}  \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
403    neighbor and specify the relative offset within the subdomain of the
404    array index of a variable going from a neighboring tile \code{N} to a
405    local tile \code{T}.  Consider \code{T=1} in the six-tile topology
406    (Fig. \ref{fig:6tile}), where
407    
408    \begin{verbatim}
409           exch2_oi(1,1)=33
410           exch2_oi(2,1)=0
411           exch2_oi(3,1)=32
412           exch2_oi(4,1)=-32
413    \end{verbatim}
414    
415    The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
416    which is \code{Tn=6}.  The axes of \code{T} and \code{Tn} have the
417    same orientation and their $x$ axes have the same origin, and so an
418    exchange between the two requires no changes to the $x$ index.  For
419    the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
420    \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
421    \code{Tn}.  The eastern edge of \code{T} shows the reverse case
422    (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
423    with \code{x=0} on \code{Tn=2}. \\
424    
425     The most interesting case, where \code{exch2\_oi(1,1)=33} and
426    \code{Tn=3}, involves a reversal of indices.  As in every case, the
427    offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
428    multiplied by the transformation factor \code{exch2\_pi(t,N,T)}.  Here
429    \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
430    to the $x$ axis of \code{Tn}.  \code{exch2\_pi(2,1,1)=-1} since the
431    $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
432    index is reversed.  The result is that the index of the northern edge
433    of \code{T}, which runs \code{(1:32)}, is transformed to
434    \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
435    get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
436    relative to \code{T}.  This transformation may seem overly convoluted
437    for the six-tile case, but it is necessary to provide a general
438    solution for various topologies. \\
439    
440    
 This needs some diagrams. \\  
441    
442    Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
443    \varlink{exch2\_ithi\_c}{exch2_ithi_c},
444    \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
445    \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
446    bounds of the edge segment of the neighbor tile \code{N}'s subdomain
447    that gets exchanged with the local tile \code{T}.  To take the example
448    of tile \code{T=2} in the twelve-tile topology
449    (Fig. \ref{fig:12tile}): \\
450    
 {\footnotesize  
451  \begin{verbatim}  \begin{verbatim}
452  C      exch2_pi          :: X index row of target to source permutation         exch2_itlo_c(4,2)=17
453  C                        :: matrix for each neighbour entry.                     exch2_ithi_c(4,2)=17
454  C      exch2_pj          :: Y index row of target to source permutation         exch2_jtlo_c(4,2)=0
455  C                        :: matrix for each neighbour entry.                     exch2_jthi_c(4,2)=33
 C      exch2_oi          :: X index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oj          :: Y index element of target to source  
 C                        :: offset vector for cell-centered quantities    
 C                        :: of each neighbor entry.                      
 C      exch2_oi_f        :: X index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
 C      exch2_oj_f        :: Y index element of target to source  
 C                        :: offset vector for face quantities            
 C                        :: of each neighbor entry.                      
456  \end{verbatim}  \end{verbatim}
457  }  
458    Here \code{N=4}, indicating the western neighbor, which is
459    \code{Tn=1}.  \code{Tn} resides on the same subdomain as \code{T}, so
460    the tiles have the same orientation and the same $x$ and $y$ axes.
461    The $x$ axis is orthogonal to the western edge and the tile is 16
462    points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
463    indicate the column beyond \code{Tn}'s eastern edge, in that tile's
464    halo region. Since the border of the tiles extends through the entire
465    height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
466    \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
467    either direction to cover part of the halo. \\
468    
469    For the north edge of the same tile \code{T=2} where \code{N=1} and
470    the neighbor tile is \code{Tn=5}:
471    
472    \begin{verbatim}
473           exch2_itlo_c(1,2)=0
474           exch2_ithi_c(1,2)=0
475           exch2_jtlo_c(1,2)=0
476           exch2_jthi_c(1,2)=17
477    \end{verbatim}
478    
479    \code{T}'s northern edge is parallel to the $x$ axis, but since
480    \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
481    northern edge exchanges with \code{Tn}'s western edge.  The western
482    edge of the tiles corresponds to the lower bound of the $x$ axis, so
483    \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
484    \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
485    width of \code{T}'s northern edge, plus the halo. \\
486    
 \subsection{Key Routines}  
487    
488    \subsection{Key Routines}
489    
490    Most of the subroutines particular to exch2 handle the exchanges
491    themselves and are of the same format as those described in
492    \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
493    communication}.  Like the original routines, they are written as
494    templates which the local Makefile converts from RX into RL and RS
495    forms. \\
496    
497    The interfaces with the core model subroutines are
498    \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
499    \code{EXCH\_XY\_RX}.  They override the standard exchange routines
500    when \code{genmake2} is run with \code{exch2} option.  They in turn
501    call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
502    \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
503    quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
504    and three-dimensional scalar quantities.  These subroutines set the
505    dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
506    for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
507    the singularities at the cube corners. \\
508    
509    The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
510    \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
511    needs to pass both the $u$ and $v$ components of the phsical vectors.
512    This arises from the topological folding discussed above, where the
513    $x$ and $y$ axes get swapped in some cases.  This swapping is not an
514    issue with the scalar version. These subroutines call
515    \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
516    the work using the variables discussed above. \\
517    
 \subsection{References}  

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22