/[MITgcm]/manual/s_phys_pkgs/text/exch2.tex
ViewVC logotype

Annotation of /manual/s_phys_pkgs/text/exch2.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (hide annotations) (download) (as text)
Fri Mar 19 21:25:45 2004 UTC (21 years, 4 months ago) by afe
Branch: MAIN
Changes since 1.16: +94 -106 lines
File MIME type: application/x-tex
o draft done!

1 afe 1.17 % $Header: /u/gcmpack/manual/part6/exch2.tex,v 1.16 2004/03/18 22:20:38 afe Exp $
2 afe 1.1 % $Name: $
3    
4     %% * Introduction
5     %% o what it does, citations (refs go into mitgcm_manual.bib,
6     %% preferably in alphabetic order)
7     %% o Equations
8     %% * Key subroutines and parameters
9     %% * Reference material (auto generated from Protex and structured comments)
10     %% o automatically inserted at \section{Reference}
11    
12    
13 afe 1.10 \section{exch2: Extended Cubed Sphere \mbox{Topology}}
14 afe 1.3 \label{sec:exch2}
15    
16 afe 1.1
17     \subsection{Introduction}
18 afe 1.2
19 afe 1.17 The \texttt{exch2} package extends the original cubed sphere topology
20     configuration to allow more flexible domain decomposition and
21     parallelization. Cube faces (also called subdomains) may be divided
22     into any number of tiles that divide evenly into the grid point
23     dimensions of the subdomain. Furthermore, the tiles can run on
24     separate processors individually or in groups, which provides for
25     manual compile-time load balancing across a relatively arbitrary
26     number of processors. \\
27 edhill 1.8
28     The exchange parameters are declared in
29     \filelink{pkg/exch2/W2\_EXCH2\_TOPOLOGY.h}{pkg-exch2-W2_EXCH2_TOPOLOGY.h}
30     and assigned in
31 afe 1.9 \filelink{pkg/exch2/w2\_e2setup.F}{pkg-exch2-w2_e2setup.F}. The
32 afe 1.11 validity of the cube topology depends on the \file{SIZE.h} file as
33 afe 1.12 detailed below. The default files provided in the release configure a
34     cubed sphere topology of six tiles, one per subdomain, each with
35     32$\times$32 grid points, all running on a single processor. Both
36     files are generated by Matlab scripts in
37 afe 1.11 \file{utils/exch2/matlab-topology-generator}; see Section
38     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
39 afe 1.12 for details on creating alternate topologies. Pregenerated examples
40     of these files with alternate topologies are provided under
41 afe 1.11 \file{utils/exch2/code-mods} along with the appropriate \file{SIZE.h}
42     file for single-processor execution.
43 afe 1.9
44     \subsection{Invoking exch2}
45    
46 afe 1.10 To use exch2 with the cubed sphere, the following conditions must be
47     met: \\
48 afe 1.9
49 afe 1.11 $\bullet$ The exch2 package is included when \file{genmake2} is run.
50     The easiest way to do this is to add the line \code{exch2} to the
51     \file{profile.conf} file -- see Section
52 afe 1.12 \ref{sect:buildingCode} \sectiontitle{Building the code} for general
53 afe 1.11 details. \\
54    
55     $\bullet$ An example of \file{W2\_EXCH2\_TOPOLOGY.h} and
56 afe 1.17 \file{w2\_e2setup.F} must reside in a directory containing files
57     symbolically linked when \file{genmake2} runs. The safest place to
58     put these is the directory indicated in the \code{-mods=DIR} command
59     line modifier (typically \file{../code}), or the build directory.
60     The default versions of these files reside in \file{pkg/exch2} and
61     are linked automatically if no other versions exist elsewhere in the
62     build path, but they should be left untouched to avoid breaking
63 afe 1.10 configurations other than the one you intend to modify.\\
64    
65     $\bullet$ Files containing grid parameters, named
66 afe 1.13 \file{tile00$n$.mitgrid} where $n$=\code{(1:6)} (one per subdomain),
67     must be in the working directory when the MITgcm executable is run.
68 afe 1.12 These files are provided in the example experiments for cubed sphere
69     configurations with 32$\times$32 cube sides and are non-trivial to
70     generate -- please contact MITgcm support if you want to generate
71     files for other configurations. \\
72    
73     $\bullet$ As always when compiling MITgcm, the file \file{SIZE.h} must
74 afe 1.13 be placed where \file{genmake2} will find it. In particular for
75 afe 1.12 exch2, the domain decomposition specified in \file{SIZE.h} must
76     correspond with the particular configuration's topology specified in
77     \file{W2\_EXCH2\_TOPOLOGY.h} and \file{w2\_e2setup.F}. Domain
78     decomposition issues particular to exch2 are addressed in Section
79     \ref{sec:topogen} \sectiontitle{Generating Topology Files for exch2}
80     and \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and MPI}; a more
81     general background on the subject relevant to MITgcm is presented in
82     Section \ref{sect:specifying_a_decomposition}
83     \sectiontitle{Specifying a decomposition}.\\
84 afe 1.9
85 afe 1.17 At the time of this writing the following examples use exch2 and may
86     be used for guidance:
87 afe 1.9
88     \begin{verbatim}
89     verification/adjust_nlfs.cs-32x32x1
90     verification/adjustment.cs-32x32x1
91     verification/aim.5l_cs
92     verification/global_ocean.cs32x15
93     verification/hs94.cs-32x32x5
94     \end{verbatim}
95    
96    
97    
98    
99 afe 1.10 \subsection{Generating Topology Files for exch2}
100     \label{sec:topogen}
101    
102     Alternate cubed sphere topologies may be created using the Matlab
103 afe 1.11 scripts in \file{utils/exch2/matlab-topology-generator}. Running the
104 afe 1.12 m-file
105     \filelink{driver.m}{utils-exch2-matlab-topology-generator_driver.m}
106     from the Matlab prompt (there are no parameters to pass) generates
107     exch2 topology files \file{W2\_EXCH2\_TOPOLOGY.h} and
108     \file{w2\_e2setup.F} in the working directory and displays a figure of
109     the topology via Matlab. The other m-files in the directory are
110     subroutines of \file{driver.m} and should not be run ``bare'' except
111     for development purposes. \\
112 afe 1.10
113     The parameters that determine the dimensions and topology of the
114 afe 1.11 generated configuration are \code{nr}, \code{nb}, \code{ng},
115 afe 1.12 \code{tnx} and \code{tny}, and all are assigned early in the script. \\
116 afe 1.10
117 afe 1.12 The first three determine the size of the subdomains and
118 afe 1.10 hence the size of the overall domain. Each one determines the number
119     of grid points, and therefore the resolution, along the subdomain
120 afe 1.13 sides in a ``great circle'' around an axis of the cube. At the time
121 afe 1.10 of this writing MITgcm requires these three parameters to be equal,
122 afe 1.12 but they provide for future releases to accomodate different
123 afe 1.10 resolutions around the axes to allow (for example) greater resolution
124     around the equator.\\
125    
126 afe 1.11 The parameters \code{tnx} and \code{tny} determine the dimensions of
127     the tiles into which the subdomains are decomposed, and must evenly
128     divide the integer assigned to \code{nr}, \code{nb} and \code{ng}.
129     The result is a rectangular tiling of the subdomain. Figure
130 afe 1.17 \ref{fig:24tile} shows one possible topology for a twenty-four-tile
131 afe 1.11 cube, and figure \ref{fig:12tile} shows one for twelve tiles. \\
132 afe 1.10
133     \begin{figure}
134     \begin{center}
135     \resizebox{4in}{!}{
136     \includegraphics{part6/s24t_16x16.ps}
137     }
138     \end{center}
139 afe 1.12
140 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
141 afe 1.17 divided into six 32$\times$32 subdomains, each of which is divided
142     into four tiles (\code{tnx=16, tny=16}) for a total of twenty-four
143     tiles. } \label{fig:24tile}
144 afe 1.10 \end{figure}
145    
146     \begin{figure}
147     \begin{center}
148     \resizebox{4in}{!}{
149     \includegraphics{part6/s12t_16x32.ps}
150     }
151     \end{center}
152 afe 1.13 \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
153 afe 1.12 divided into six 32$\times$32 subdomains of two tiles each
154     (\code{tnx=16, tny=32}).
155 afe 1.10 } \label{fig:12tile}
156     \end{figure}
157    
158 afe 1.13 \begin{figure}
159     \begin{center}
160     \resizebox{4in}{!}{
161     \includegraphics{part6/s6t_32x32.ps}
162     }
163     \end{center}
164     \caption{Plot of a cubed sphere topology with a 32$\times$192 domain
165     divided into six 32$\times$32 subdomains with one tile each
166     (\code{tnx=32, tny=32}). This is the default configuration.
167     }
168     \label{fig:6tile}
169     \end{figure}
170    
171    
172 afe 1.10 Tiles can be selected from the topology to be omitted from being
173 afe 1.12 allocated memory and processors. This tuning is useful in ocean
174     modeling for omitting tiles that fall entirely on land. The tiles
175     omitted are specified in the file
176     \filelink{blanklist.txt}{utils-exch2-matlab-topology-generator_blanklist.txt}
177     by their tile number in the topology, separated by a newline. \\
178    
179 afe 1.10
180    
181    
182 afe 1.12 \subsection{exch2, SIZE.h, and multiprocessing}
183     \label{sec:exch2mpi}
184    
185     Once the topology configuration files are created, the Fortran
186 afe 1.13 \code{PARAMETER}s in \file{SIZE.h} must be configured to match.
187     Section \ref{sect:specifying_a_decomposition} \sectiontitle{Specifying
188     a decomposition} provides a general description of domain
189     decomposition within MITgcm and its relation to \file{SIZE.h}. The
190     current section specifies certain constraints the exch2 package
191     imposes as well as describes how to enable parallel execution with
192     MPI. \\
193 afe 1.12
194     As in the general case, the parameters \varlink{sNx}{sNx} and
195     \varlink{sNy}{sNy} define the size of the individual tiles, and so
196     must be assigned the same respective values as \code{tnx} and
197     \code{tny} in \file{driver.m}.\\
198    
199     The halo width parameters \varlink{OLx}{OLx} and \varlink{OLy}{OLy}
200     have no special bearing on exch2 and may be assigned as in the general
201     case. The same holds for \varlink{Nr}{Nr}, the number of vertical
202     levels in the model.\\
203    
204     The parameters \varlink{nSx}{nSx}, \varlink{nSy}{nSy},
205     \varlink{nPx}{nPx}, and \varlink{nPy}{nPy} relate to the number of
206     tiles and how they are distributed on processors. When using exch2,
207 afe 1.17 the tiles are stored in a single dimension, and so
208 afe 1.12 \code{\varlink{nSy}{nSy}=1} in all cases. Since the tiles as
209     configured by exch2 cannot be split up accross processors without
210     regenerating the topology, \code{\varlink{nPy}{nPy}=1} as well. \\
211    
212     The number of tiles MITgcm allocates and how they are distributed
213     between processors depends on \varlink{nPx}{nPx} and
214     \varlink{nSx}{nSx}. \varlink{nSx}{nSx} is the number of tiles per
215     processor and \varlink{nPx}{nPx} the number of processors. The total
216     number of tiles in the topology minus those listed in
217     \file{blanklist.txt} must equal \code{nSx*nPx}. \\
218    
219     The following is an example of \file{SIZE.h} for the twelve-tile
220     configuration illustrated in figure \ref{fig:12tile} running on
221     one processor: \\
222    
223     \begin{verbatim}
224     PARAMETER (
225     & sNx = 16,
226     & sNy = 32,
227     & OLx = 2,
228     & OLy = 2,
229     & nSx = 12,
230     & nSy = 1,
231     & nPx = 1,
232     & nPy = 1,
233     & Nx = sNx*nSx*nPx,
234     & Ny = sNy*nSy*nPy,
235     & Nr = 5)
236     \end{verbatim}
237    
238 afe 1.17 The following is an example for the twenty-four-tile topology in
239     figure \ref{fig:24tile} running on six processors:
240 afe 1.12
241     \begin{verbatim}
242     PARAMETER (
243     & sNx = 16,
244     & sNy = 16,
245     & OLx = 2,
246     & OLy = 2,
247     & nSx = 4,
248     & nSy = 1,
249     & nPx = 6,
250     & nPy = 1,
251     & Nx = sNx*nSx*nPx,
252     & Ny = sNy*nSy*nPy,
253     & Nr = 5)
254     \end{verbatim}
255    
256    
257 afe 1.10
258    
259 afe 1.4
260     \subsection{Key Variables}
261    
262     The descriptions of the variables are divided up into scalars,
263 afe 1.17 one-dimensional arrays indexed to the tile number, and two and
264     three-dimensional arrays indexed to tile number and neighboring tile.
265     This division reflects the functionality of these variables: The
266 edhill 1.8 scalars are common to every part of the topology, the tile-indexed
267 afe 1.12 arrays to individual tiles, and the arrays indexed by tile and
268     neighbor to relationships between tiles and their neighbors. \\
269 afe 1.4
270     \subsubsection{Scalars}
271    
272     The number of tiles in a particular topology is set with the parameter
273 afe 1.12 \code{NTILES}, and the maximum number of neighbors of any tiles by
274     \code{MAX\_NEIGHBOURS}. These parameters are used for defining the
275 edhill 1.8 size of the various one and two dimensional arrays that store tile
276 afe 1.12 parameters indexed to the tile number and are assigned in the files
277     generated by \file{driver.m}.\\
278 edhill 1.8
279     The scalar parameters \varlink{exch2\_domain\_nxt}{exch2_domain_nxt}
280     and \varlink{exch2\_domain\_nyt}{exch2_domain_nyt} express the number
281 afe 1.12 of tiles in the $x$ and $y$ global indices. For example, the default
282 afe 1.15 setup of six tiles (Fig. \ref{fig:6tile}) has
283     \code{exch2\_domain\_nxt=6} and \code{exch2\_domain\_nyt=1}. A
284     topology of twenty-four square tiles, four per subdomain (as in figure
285     \ref{fig:24tile}), will have \code{exch2\_domain\_nxt=12} and
286     \code{exch2\_domain\_nyt=2}. Note that these parameters express the
287     tile layout to allow global data files that are tile-layout-neutral
288     and have no bearing on the internal storage of the arrays. The tiles
289 afe 1.17 are stored internally in a range from \code{(1:\varlink{bi}{bi})} the
290     $x$ axis, and the $y$ axis variable \varlink{bj}{bj} generally is
291 afe 1.15 ignored within the package. \\
292 afe 1.4
293 afe 1.6 \subsubsection{Arrays Indexed to Tile Number}
294 afe 1.4
295 afe 1.17 The following arrays are of length \code{NTILES} and are indexed to
296     the tile number, which is indicated in the diagrams with the notation
297 afe 1.15 \textsf{t}$n$. The indices are omitted in the descriptions. \\
298 afe 1.4
299 edhill 1.8 The arrays \varlink{exch2\_tnx}{exch2_tnx} and
300 afe 1.12 \varlink{exch2\_tny}{exch2_tny} express the $x$ and $y$ dimensions of
301     each tile. At present for each tile \texttt{exch2\_tnx=sNx} and
302     \texttt{exch2\_tny=sNy}, as assigned in \file{SIZE.h} and described in
303     section \ref{sec:exch2mpi} \sectiontitle{exch2, SIZE.h, and
304     multiprocessing}. Future releases of MITgcm are to allow varying tile
305     sizes. \\
306 edhill 1.8
307     The location of the tiles' Cartesian origin within a subdomain are
308     determined by the arrays \varlink{exch2\_tbasex}{exch2_tbasex} and
309     \varlink{exch2\_tbasey}{exch2_tbasey}. These variables are used to
310 afe 1.12 relate the location of the edges of different tiles to each other. As
311 afe 1.13 an example, in the default six-tile topology (Fig. \ref{fig:6tile})
312     each index in these arrays is set to \code{0} since a tile occupies
313 afe 1.17 its entire subdomain. The twenty-four-tile case discussed above will
314 afe 1.13 have values of \code{0} or \code{16}, depending on the quadrant the
315     tile falls within the subdomain. The elements of the arrays
316     \varlink{exch2\_txglobalo}{exch2_txglobalo} and
317     \varlink{exch2\_txglobalo}{exch2_txglobalo} are similar to
318 edhill 1.8 \varlink{exch2\_tbasex}{exch2_tbasex} and
319     \varlink{exch2\_tbasey}{exch2_tbasey}, but locate the tiles within the
320 afe 1.17 global address space, similar to that used by global output and input
321     files. \\
322 edhill 1.8
323 afe 1.13 The array \varlink{exch2\_myFace}{exch2_myFace} contains the number of
324     the subdomain of each tile, in a range \code{(1:6)} in the case of the
325     standard cube topology and indicated by \textbf{\textsf{f}}$n$ in
326     figures \ref{fig:12tile} and
327     \ref{fig:24tile}. \varlink{exch2\_nNeighbours}{exch2_nNeighbours}
328 afe 1.17 contains a count of the neighboring tiles each tile has, and is used
329     for setting bounds for looping over neighboring tiles.
330 afe 1.13 \varlink{exch2\_tProc}{exch2_tProc} holds the process rank of each
331     tile, and is used in interprocess communication. \\
332    
333    
334 edhill 1.8 The arrays \varlink{exch2\_isWedge}{exch2_isWedge},
335     \varlink{exch2\_isEedge}{exch2_isEedge},
336     \varlink{exch2\_isSedge}{exch2_isSedge}, and
337 afe 1.12 \varlink{exch2\_isNedge}{exch2_isNedge} are set to \code{1} if the
338 afe 1.15 indexed tile lies on the respective edge of a subdomain, \code{0} if
339     not. The values are used within the topology generator to determine
340     the orientation of neighboring tiles, and to indicate whether a tile
341     lies on the corner of a subdomain. The latter case requires special
342 afe 1.12 exchange and numerical handling for the singularities at the eight
343 afe 1.13 corners of the cube. \\
344    
345 afe 1.4
346 afe 1.6 \subsubsection{Arrays Indexed to Tile Number and Neighbor}
347 afe 1.4
348 afe 1.17 The following arrays have vectors of length \code{MAX\_NEIGHBOURS} and
349     \code{NTILES} and describe the orientations between the the tiles. \\
350 afe 1.12
351     The array \code{exch2\_neighbourId(a,T)} holds the tile number
352     \code{Tn} for each of the tile number \code{T}'s neighboring tiles
353 afe 1.15 \code{a}. The neighbor tiles are indexed
354 afe 1.17 \code{(1:exch2\_nNeighbours(T))} in the order right to left on the
355     north then south edges, and then top to bottom on the east then west
356     edges. \\
357 afe 1.15
358 afe 1.17 The \code{exch2\_opposingSend\_record(a,T)} array holds the
359 afe 1.15 index \code{b} of the element in \texttt{exch2\_neighbourId(b,Tn)}
360     that holds the tile number \code{T}, given
361     \code{Tn=exch2\_neighborId(a,T)}. In other words,
362 edhill 1.8 \begin{verbatim}
363     exch2_neighbourId( exch2_opposingSend_record(a,T),
364     exch2_neighbourId(a,T) ) = T
365 afe 1.5 \end{verbatim}
366 afe 1.12 This provides a back-reference from the neighbor tiles. \\
367 afe 1.5
368 afe 1.13 The arrays \varlink{exch2\_pi}{exch2_pi} and
369 afe 1.15 \varlink{exch2\_pj}{exch2_pj} specify the transformations of indices
370 afe 1.13 in exchanges between the neighboring tiles. These transformations are
371 afe 1.15 necessary in exchanges between subdomains because the array index in
372     one dimension may map to the other index in an adjacent subdomain, and
373     may be have its indexing reversed. This swapping arises from the
374 afe 1.17 ``folding'' of two-dimensional arrays into a three-dimensional
375     cube. \\
376 afe 1.13
377     The dimensions of \code{exch2\_pi(t,N,T)} and \code{exch2\_pj(t,N,T)}
378     are the neighbor ID \code{N} and the tile number \code{T} as explained
379 afe 1.15 above, plus a vector of length \code{2} containing transformation
380     factors \code{t}. The first element of the transformation vector
381     holds the factor to multiply the index in the same axis, and the
382     second element holds the the same for the orthogonal index. To
383     clarify, \code{exch2\_pi(1,N,T)} holds the mapping of the $x$ axis
384     index of tile \code{T} to the $x$ axis of tile \code{T}'s neighbor
385     \code{N}, and \code{exch2\_pi(2,N,T)} holds the mapping of \code{T}'s
386     $x$ index to the neighbor \code{N}'s $y$ index. \\
387 afe 1.12
388 afe 1.15 One of the two elements of \code{exch2\_pi} or \code{exch2\_pj} for a
389     given tile \code{T} and neighbor \code{N} will be \code{0}, reflecting
390     the fact that the two axes are orthogonal. The other element will be
391     \code{1} or \code{-1}, depending on whether the axes are indexed in
392     the same or opposite directions. For example, the transform vector of
393     the arrays for all tile neighbors on the same subdomain will be
394 afe 1.13 \code{(1,0)}, since all tiles on the same subdomain are oriented
395 afe 1.15 identically. An axis that corresponds to the orthogonal dimension
396     with the same index direction in a particular tile-neighbor
397     orientation will have \code{(0,1)}. Those in the opposite index
398     direction will have \code{(0,-1)} in order to reverse the ordering. \\
399 afe 1.13
400 afe 1.14 The arrays \varlink{exch2\_oi}{exch2_oi},
401     \varlink{exch2\_oj}{exch2_oj}, \varlink{exch2\_oi\_f}{exch2_oi_f}, and
402     \varlink{exch2\_oj\_f}{exch2_oj_f} are indexed to tile number and
403     neighbor and specify the relative offset within the subdomain of the
404 afe 1.17 array index of a variable going from a neighboring tile \code{N} to a
405     local tile \code{T}. Consider \code{T=1} in the six-tile topology
406 afe 1.16 (Fig. \ref{fig:6tile}), where
407    
408     \begin{verbatim}
409     exch2_oi(1,1)=33
410     exch2_oi(2,1)=0
411     exch2_oi(3,1)=32
412     exch2_oi(4,1)=-32
413     \end{verbatim}
414    
415     The simplest case is \code{exch2\_oi(2,1)}, the southern neighbor,
416     which is \code{Tn=6}. The axes of \code{T} and \code{Tn} have the
417     same orientation and their $x$ axes have the same origin, and so an
418     exchange between the two requires no changes to the $x$ index. For
419     the western neighbor (\code{Tn=5}), \code{code\_oi(3,1)=32} since the
420     \code{x=0} vector on \code{T} corresponds to the \code{y=32} vector on
421     \code{Tn}. The eastern edge of \code{T} shows the reverse case
422 afe 1.17 (\code{exch2\_oi(4,1)=-32)}), where \code{x=32} on \code{T} exchanges
423     with \code{x=0} on \code{Tn=2}. \\
424    
425     The most interesting case, where \code{exch2\_oi(1,1)=33} and
426     \code{Tn=3}, involves a reversal of indices. As in every case, the
427     offset \code{exch2\_oi} is added to the original $x$ index of \code{T}
428     multiplied by the transformation factor \code{exch2\_pi(t,N,T)}. Here
429     \code{exch2\_pi(1,1,1)=0} since the $x$ axis of \code{T} is orthogonal
430     to the $x$ axis of \code{Tn}. \code{exch2\_pi(2,1,1)=-1} since the
431     $x$ axis of \code{T} corresponds to the $y$ axis of \code{Tn}, but the
432     index is reversed. The result is that the index of the northern edge
433     of \code{T}, which runs \code{(1:32)}, is transformed to
434 afe 1.16 \code{(-1:-32)}. \code{exch2\_oi(1,1)} is then added to this range to
435 afe 1.17 get back \code{(32:1)} -- the index of the $y$ axis of \code{Tn}
436     relative to \code{T}. This transformation may seem overly convoluted
437     for the six-tile case, but it is necessary to provide a general
438     solution for various topologies. \\
439 afe 1.16
440    
441 afe 1.14
442     Finally, \varlink{exch2\_itlo\_c}{exch2_itlo_c},
443     \varlink{exch2\_ithi\_c}{exch2_ithi_c},
444     \varlink{exch2\_jtlo\_c}{exch2_jtlo_c} and
445     \varlink{exch2\_jthi\_c}{exch2_jthi_c} hold the location and index
446     bounds of the edge segment of the neighbor tile \code{N}'s subdomain
447     that gets exchanged with the local tile \code{T}. To take the example
448     of tile \code{T=2} in the twelve-tile topology
449     (Fig. \ref{fig:12tile}): \\
450    
451     \begin{verbatim}
452     exch2_itlo_c(4,2)=17
453     exch2_ithi_c(4,2)=17
454     exch2_jtlo_c(4,2)=0
455     exch2_jthi_c(4,2)=33
456     \end{verbatim}
457    
458 afe 1.17 Here \code{N=4}, indicating the western neighbor, which is
459     \code{Tn=1}. \code{Tn} resides on the same subdomain as \code{T}, so
460     the tiles have the same orientation and the same $x$ and $y$ axes.
461     The $x$ axis is orthogonal to the western edge and the tile is 16
462     points wide, so \code{exch2\_itlo\_c} and \code{exch2\_ithi\_c}
463     indicate the column beyond \code{Tn}'s eastern edge, in that tile's
464     halo region. Since the border of the tiles extends through the entire
465 afe 1.14 height of the subdomain, the $y$ axis bounds \code{exch2\_jtlo\_c} to
466 afe 1.17 \code{exch2\_jthi\_c} cover the height of \code{(1:32)}, plus 1 in
467     either direction to cover part of the halo. \\
468 afe 1.14
469     For the north edge of the same tile \code{T=2} where \code{N=1} and
470     the neighbor tile is \code{Tn=5}:
471    
472     \begin{verbatim}
473     exch2_itlo_c(1,2)=0
474     exch2_ithi_c(1,2)=0
475     exch2_jtlo_c(1,2)=0
476     exch2_jthi_c(1,2)=17
477     \end{verbatim}
478    
479     \code{T}'s northern edge is parallel to the $x$ axis, but since
480 afe 1.17 \code{Tn}'s $y$ axis corresponds to \code{T}'s $x$ axis, \code{T}'s
481     northern edge exchanges with \code{Tn}'s western edge. The western
482     edge of the tiles corresponds to the lower bound of the $x$ axis, so
483     \code{exch2\_itlo\_c} \code{exch2\_ithi\_c} are \code{0}. The range of
484     \code{exch2\_jtlo\_c} and \code{exch2\_jthi\_c} correspond to the
485 afe 1.14 width of \code{T}'s northern edge, plus the halo. \\
486    
487    
488 afe 1.1 \subsection{Key Routines}
489    
490 afe 1.16 Most of the subroutines particular to exch2 handle the exchanges
491     themselves and are of the same format as those described in
492     \ref{sect:cube_sphere_communication} \sectiontitle{Cube sphere
493     communication}. Like the original routines, they are written as
494     templates which the local Makefile converts from RX into RL and RS
495     forms. \\
496    
497     The interfaces with the core model subroutines are
498 afe 1.17 \code{EXCH\_UV\_XY\_RX}, \code{EXCH\_UV\_XYZ\_RX} and
499     \code{EXCH\_XY\_RX}. They override the standard exchange routines
500     when \code{genmake2} is run with \code{exch2} option. They in turn
501     call the local exch2 subroutines \code{EXCH2\_UV\_XY\_RX} and
502     \code{EXCH2\_UV\_XYZ\_RX} for two and three-dimensional vector
503     quantities, and \code{EXCH2\_XY\_RX} and \code{EXCH2\_XYZ\_RX} for two
504     and three-dimensional scalar quantities. These subroutines set the
505     dimensions of the area to be exchanged, call \code{EXCH2\_RX1\_CUBE}
506     for scalars and \code{EXCH2\_RX2\_CUBE} for vectors, and then handle
507     the singularities at the cube corners. \\
508 afe 1.16
509     The separate scalar and vector forms of \code{EXCH2\_RX1\_CUBE} and
510 afe 1.17 \code{EXCH2\_RX2\_CUBE} reflect that the vector-handling subrouine
511     needs to pass both the $u$ and $v$ components of the phsical vectors.
512     This arises from the topological folding discussed above, where the
513     $x$ and $y$ axes get swapped in some cases. This swapping is not an
514     issue with the scalar version. These subroutines call
515     \code{EXCH2\_SEND\_RX1} and \code{EXCH2\_SEND\_RX2}, which do most of
516     the work using the variables discussed above. \\
517 afe 1.1

  ViewVC Help
Powered by ViewVC 1.1.22