1 |
function [U,V] = uvcube2latlon(LON,LAT,u,v,xc,yc) |
2 |
% [ui,vi]=cube2latlon(x,y,u,v,xi,yi); |
3 |
% |
4 |
% Re-grids model output on expanded spherical cube to lat-lon grid. |
5 |
% x,y are 2-D arrays of the cell-centered coordinates |
6 |
% u,v is a 2-D or 3-D horizontal components of model flow fields. |
7 |
% xi,yi are vectors of the new regular lat-lon grid to interpolate to. |
8 |
% ui,vi are the flow fields with dimensions of size(xi) x size(yi) size(u,3). |
9 |
% |
10 |
% e.g. |
11 |
% >> x=rdmds('XC'); |
12 |
% >> y=rdmds('YC'); |
13 |
% >> u=rdmds('uVeltave.0000513360'); |
14 |
% >> v=rdmds('vVeltave.0000513360'); |
15 |
% >> xi=-179:2:180;yi=-89:2:90; |
16 |
% >> [ui,vi]=uvcube2latlon(x,y,u,v,xi,yi); |
17 |
% |
18 |
% $Header: $ |
19 |
|
20 |
[nnx ny nz]=size(u); |
21 |
|
22 |
U=reshape(u,[ny 6 ny nz]); |
23 |
V=reshape(v,[ny 6 ny nz]); |
24 |
|
25 |
uu=zeros(ny+1,6,ny,nz); |
26 |
vv=zeros(ny,6,ny+1,nz); |
27 |
|
28 |
for k=1:6; |
29 |
uu(1:ny,k,:,:)=U(:,k,:,:); |
30 |
vv(:,k,1:ny,:)=V(:,k,:,:); |
31 |
end |
32 |
|
33 |
for k=1:nz; |
34 |
uu(ny+1,1:2:6,:,k)=uu(1,2:2:6,:,k); |
35 |
uu(ny+1,2:2:6,:,k)=vv(ny:-1:1,[4:2:6 2:2:3],1,k)'; |
36 |
vv(:,2:2:6,ny+1,k)=vv(:,[3:2:6 1],1,k); |
37 |
vv(:,1:2:6,ny+1,k)=squeeze(uu(1,[3:2:6 1],ny:-1:1,k))'; |
38 |
end |
39 |
|
40 |
ub=(uu(1:ny,:,:,:)+uu(2:ny+1,:,:,:))/2; |
41 |
vb=(vv(:,:,1:ny,:)+vv(:,:,2:ny+1,:))/2; |
42 |
|
43 |
load TUV |
44 |
|
45 |
clear U V |
46 |
for kk=1:nz; |
47 |
for k=1:6; |
48 |
U(:,k,:,kk)=TUu(:,:,k).*squeeze(ub(:,k,:,kk))+TUv(:,:,k).*squeeze(vb(:,k,:,kk)); |
49 |
V(:,k,:,kk)=TVu(:,:,k).*squeeze(ub(:,k,:,kk))+TVv(:,:,k).*squeeze(vb(:,k,:,kk)); |
50 |
end |
51 |
end |
52 |
|
53 |
U=reshape(U,[nnx ny nz]); |
54 |
V=reshape(V,[nnx ny nz]); |
55 |
|
56 |
xc=-179:2:179; |
57 |
yc=-89:2:89; |
58 |
U=cube2latlon(LON,LAT,U,xc,yc); |
59 |
V=cube2latlon(LON,LAT,V,xc,yc); |