1 |
C $Header: /u/gcmpack/models/MITgcmUV/pkg/mom_vecinv/mom_vi_v_vertshear.F,v 1.2 2001/05/29 14:01:39 adcroft Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
|
6 |
SUBROUTINE MOM_VI_V_VERTSHEAR( |
7 |
I bi,bj,K, |
8 |
I vFld,wFld, |
9 |
U vShearTerm, |
10 |
I myThid) |
11 |
IMPLICIT NONE |
12 |
C /==========================================================\ |
13 |
C | S/R MOM_V_VERTSHEAR | |
14 |
C |==========================================================| |
15 |
C \==========================================================/ |
16 |
|
17 |
C == Global variables == |
18 |
#include "SIZE.h" |
19 |
#include "EEPARAMS.h" |
20 |
#include "GRID.h" |
21 |
#include "PARAMS.h" |
22 |
|
23 |
C == Routine arguments == |
24 |
INTEGER bi,bj,K |
25 |
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
26 |
_RL wFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
27 |
_RL vShearTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
28 |
INTEGER myThid |
29 |
|
30 |
C == Local variables == |
31 |
INTEGER I,J,Kp1,Km1 |
32 |
_RL mask_Kp1,mask_Km1,wBarYm,wBarYp |
33 |
_RL vZm,vZp,vmask_Kp1,vmask_K,vmask_Km1 |
34 |
LOGICAL freeslipK,noslipK |
35 |
PARAMETER(freeslipK=.TRUE.) |
36 |
PARAMETER(noslipK=.NOT.freeslipK) |
37 |
LOGICAL freeslip1,noslip1 |
38 |
PARAMETER(freeslip1=.TRUE.) |
39 |
PARAMETER(noslip1=.NOT.freeslip1) |
40 |
c1 _RL wBarYZ,vZbarZ |
41 |
c1 LOGICAL upwindShear |
42 |
c1 PARAMETER(upwindShear=.FALSE.) |
43 |
|
44 |
Kp1=min(K+1,Nr) |
45 |
mask_Kp1=1. |
46 |
IF (K.EQ.Nr) mask_Kp1=0. |
47 |
Km1=max(K-1,1) |
48 |
mask_Km1=1. |
49 |
IF (K.EQ.1) mask_Km1=0. |
50 |
|
51 |
DO J=2-Oly,sNy+Oly |
52 |
DO I=1-Olx,sNx+Olx |
53 |
|
54 |
c vmask_K=_maskS(i,j,k,bi,bj) |
55 |
|
56 |
C barZ( barY( W ) ) |
57 |
c wBarYm=0.5*(wFld(I,J,K,bi,bj)+wFld(I,J-1,K,bi,bj)) |
58 |
c wBarYp=0.5*(wFld(I,J,Kp1,bi,bj)+wFld(I,J-1,Kp1,bi,bj)) |
59 |
c & *mask_Kp1 |
60 |
|
61 |
C Transport at interface k |
62 |
wBarYm=0.5*(wFld(I,J,K,bi,bj)*rA(i,j,bi,bj) |
63 |
& +wFld(I,J-1,K,bi,bj)*rA(i,j-1,bi,bj)) |
64 |
|
65 |
C Transport at interface k+1 |
66 |
wBarYp=0.5*(wFld(I,J,Kp1,bi,bj)*rA(i,j,bi,bj) |
67 |
& +wFld(I,J-1,Kp1,bi,bj)*rA(i,j-1,bi,bj))*mask_Kp1 |
68 |
|
69 |
C delta_Z( V ) @ interface k |
70 |
vmask_Km1=mask_Km1*maskS(i,j,Km1,bi,bj) |
71 |
vZm=(mask_Km1*vFld(I,J,Km1,bi,bj)-vFld(I,J,K,bi,bj)) |
72 |
c2 & *recip_dRC(K) |
73 |
IF (freeslip1) vZm=vZm*vmask_Km1 |
74 |
IF (noslip1.AND.vmask_Km1.EQ.0.) vZm=vZm*2. |
75 |
|
76 |
C delta_Z( V ) @ interface k+1 |
77 |
vmask_Kp1=mask_Kp1*maskS(i,j,Kp1,bi,bj) |
78 |
vZp=(vFld(I,J,K,bi,bj)-mask_Kp1*vFld(I,J,Kp1,bi,bj)) |
79 |
c2 & *recip_dRC(Kp1) |
80 |
IF (freeslipK) vZp=vZp*vmask_Kp1 |
81 |
IF (noslipK.AND.vmask_Kp1.EQ.0.) vZp=vZp*2. |
82 |
|
83 |
c1 IF (upwindShear) THEN |
84 |
c1 wBarYZ=0.5*( wBarXm + wBarXp ) |
85 |
c1 IF (wBarYZ.GT.0.) THEN |
86 |
c1 vZbarZ=vZp |
87 |
c1 ELSE |
88 |
c1 vZbarZ=vZm |
89 |
c1 ENDIF |
90 |
c1 ELSE |
91 |
c1 vZbarZ=0.5*(vZm+vZp) |
92 |
c1 ENDIF |
93 |
c1 vShearTerm(I,J)=-wBarYZ*vZbarZ*_maskS(I,J,K,bi,bj) |
94 |
|
95 |
c2 vShearTerm(I,J)=-0.5*(wBarYp*vZp+wBarYm*vZm) |
96 |
c2 & *_maskS(I,J,K,bi,bj) |
97 |
vShearTerm(I,J)=-0.5*(wBarYp*vZp+wBarYm*vZm) |
98 |
& *recip_ras(i,j,bi,bj) |
99 |
& *recip_hFacS(i,j,k,bi,bj) |
100 |
& *recip_dRF(K) |
101 |
ENDDO |
102 |
ENDDO |
103 |
|
104 |
RETURN |
105 |
END |