| 1 |
C $Header: /u/gcmpack/models/MITgcmUV/eesupp/src/exch_uv_rx_cube.template,v 1.2 2001/05/29 14:01:36 adcroft Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_EEOPTIONS.h" |
| 5 |
|
| 6 |
CBOP |
| 7 |
C !ROUTINE: EXCH_UV_RX_CUBE |
| 8 |
|
| 9 |
C !INTERFACE: |
| 10 |
SUBROUTINE EXCH_UV_RX_CUBE( |
| 11 |
U Uarray,Varray, withSigns, |
| 12 |
I myOLw, myOLe, myOLn, myOLs, myNz, |
| 13 |
I exchWidthX, exchWidthY, |
| 14 |
I simulationMode, cornerMode, myThid ) |
| 15 |
IMPLICIT NONE |
| 16 |
|
| 17 |
C !DESCRIPTION: |
| 18 |
C *==========================================================* |
| 19 |
C | SUBROUTINE EXCH_UV_RX_CUBE |
| 20 |
C | o Control edge exchanges for RX array for CS config. |
| 21 |
C *==========================================================* |
| 22 |
C | |
| 23 |
C | Controlling routine for exchange of XY edges of an array |
| 24 |
C | distributed in X and Y. The routine interfaces to |
| 25 |
C | communication routines that can use messages passing |
| 26 |
C | exchanges, put type exchanges or get type exchanges. |
| 27 |
C | This allows anything from MPI to raw memory channel to |
| 28 |
C | memmap segments to be used as a inter-process and/or |
| 29 |
C | inter-thread communiation and synchronisation |
| 30 |
C | mechanism. |
| 31 |
C | Notes -- |
| 32 |
C | 1. Some low-level mechanisms such as raw memory-channel |
| 33 |
C | or SGI/CRAY shmem put do not have direct Fortran bindings |
| 34 |
C | and are invoked through C stub routines. |
| 35 |
C | 2. Although this routine is fairly general but it does |
| 36 |
C | require nSx and nSy are the same for all innvocations. |
| 37 |
C | There are many common data structures ( myByLo, |
| 38 |
C | westCommunicationMode, mpiIdW etc... ) tied in with |
| 39 |
C | (nSx,nSy). To support arbitray nSx and nSy would require |
| 40 |
C | general forms of these. |
| 41 |
C | 3. Exchanges on the cube of vector quantities need to be |
| 42 |
C | paired to allow rotations and sign reversal to be applied |
| 43 |
C | consistently between vector components as they rotate. |
| 44 |
C | |
| 45 |
C *==========================================================* |
| 46 |
|
| 47 |
C !USES: |
| 48 |
C == Global data == |
| 49 |
#include "SIZE.h" |
| 50 |
#include "EEPARAMS.h" |
| 51 |
#include "EESUPPORT.h" |
| 52 |
#include "EXCH.h" |
| 53 |
|
| 54 |
C !INPUT/OUTPUT PARAMETERS: |
| 55 |
C == Routine arguments == |
| 56 |
C Uarray :: (u-type) Array with edges to exchange. |
| 57 |
C Varray :: (v-type) Array with edges to exchange. |
| 58 |
C withSigns :: Uarray,Varray are vector components. |
| 59 |
C myOLw :: West, East, North and South overlap region sizes. |
| 60 |
C myOLe |
| 61 |
C myOLn |
| 62 |
C myOLs |
| 63 |
C exchWidthX :: Width of data region exchanged in X. |
| 64 |
C exchWidthY :: Width of data region exchanged in Y. |
| 65 |
C Note -- |
| 66 |
C 1. In theory one could have a send width and |
| 67 |
C a receive width for each face of each tile. The only |
| 68 |
C restriction woul be that the send width of one |
| 69 |
C face should equal the receive width of the sent to |
| 70 |
C tile face. Dont know if this would be useful. I |
| 71 |
C have left it out for now as it requires additional |
| 72 |
C bookeeping. |
| 73 |
C simulationMode :: Forward or reverse mode exchange ( provides |
| 74 |
C support for adjoint integration of code. ) |
| 75 |
C cornerMode :: Flag indicating whether corner updates are |
| 76 |
C needed. |
| 77 |
C myThid :: Thread number of this instance of S/R EXCH... |
| 78 |
LOGICAL withSigns |
| 79 |
INTEGER myOLw |
| 80 |
INTEGER myOLe |
| 81 |
INTEGER myOLs |
| 82 |
INTEGER myOLn |
| 83 |
INTEGER myNz |
| 84 |
INTEGER exchWidthX |
| 85 |
INTEGER exchWidthY |
| 86 |
INTEGER simulationMode |
| 87 |
INTEGER cornerMode |
| 88 |
INTEGER myThid |
| 89 |
_RX Uarray(1-myOLw:sNx+myOLe, |
| 90 |
& 1-myOLs:sNy+myOLn, |
| 91 |
& myNZ, nSx, nSy) |
| 92 |
_RX Varray(1-myOLw:sNx+myOLe, |
| 93 |
& 1-myOLs:sNy+myOLn, |
| 94 |
& myNZ, nSx, nSy) |
| 95 |
|
| 96 |
C !LOCAL VARIABLES: |
| 97 |
C == Local variables == |
| 98 |
C theSimulationMode :: Holds working copy of simulation mode |
| 99 |
C theCornerMode :: Holds working copy of corner mode |
| 100 |
C I,J,K :: Loop counters and index variables |
| 101 |
C bl,bt,bn,bs,be,bw |
| 102 |
C negOne,Utmp,Vtmp :: Temps used in swapping and rotating |
| 103 |
C vectors. |
| 104 |
INTEGER theSimulationMode |
| 105 |
INTEGER theCornerMode |
| 106 |
INTEGER I,J,K,repeat |
| 107 |
INTEGER bl,bt,bn,bs,be,bw |
| 108 |
_RL negOne,Utmp,Vtmp |
| 109 |
C == Statement function == |
| 110 |
C tilemod :: Permutes indices to return neighboring tile index on |
| 111 |
C six face cube. |
| 112 |
INTEGER tilemod |
| 113 |
tilemod(I)=1+mod(I-1+6,6) |
| 114 |
CEOP |
| 115 |
|
| 116 |
theSimulationMode = simulationMode |
| 117 |
theCornerMode = cornerMode |
| 118 |
|
| 119 |
negOne = 1. |
| 120 |
IF (withSigns) negOne = -1. |
| 121 |
|
| 122 |
C For now tile<->tile exchanges are sequentialised through |
| 123 |
C thread 1. This is a temporary feature for preliminary testing until |
| 124 |
C general tile decomposistion is in place (CNH April 11, 2001) |
| 125 |
CALL BAR2( myThid ) |
| 126 |
IF ( myThid .EQ. 1 ) THEN |
| 127 |
|
| 128 |
DO repeat=1,2 |
| 129 |
|
| 130 |
DO bl = 1, 5, 2 |
| 131 |
|
| 132 |
bt = bl |
| 133 |
bn=tilemod(bt+2) |
| 134 |
bs=tilemod(bt-1) |
| 135 |
be=tilemod(bt+1) |
| 136 |
bw=tilemod(bt-2) |
| 137 |
|
| 138 |
DO K = 1,myNz |
| 139 |
|
| 140 |
C Tile Odd:Odd+2 [get] [North<-West] |
| 141 |
DO J = 1,sNy+1 |
| 142 |
DO I = 1,exchWidthX |
| 143 |
Uarray(J,sNy+I,K,bt,1) = negOne*Varray(I,sNy+2-J,K,bn,1) |
| 144 |
ENDDO |
| 145 |
ENDDO |
| 146 |
DO J = 1,sNy |
| 147 |
DO I = 1,exchWidthX |
| 148 |
Varray(J,sNy+I,K,bt,1) = Uarray(I,sNy+1-J,K,bn,1) |
| 149 |
ENDDO |
| 150 |
ENDDO |
| 151 |
C Tile Odd:Odd-1 [get] [South<-North] |
| 152 |
DO J = 1,sNy+1 |
| 153 |
DO I = 1,exchWidthX |
| 154 |
Uarray(J,1-I,K,bt,1) = Uarray(J,sNy+1-I,K,bs,1) |
| 155 |
ENDDO |
| 156 |
ENDDO |
| 157 |
DO J = 1,sNy |
| 158 |
DO I = 1,exchWidthX |
| 159 |
Varray(J,1-I,K,bt,1) = Varray(J,sNy+1-I,K,bs,1) |
| 160 |
ENDDO |
| 161 |
ENDDO |
| 162 |
C Tile Odd:Odd+1 [get] [East<-West] |
| 163 |
DO J = 1,sNy |
| 164 |
DO I = 1,exchWidthX |
| 165 |
Uarray(sNx+I,J,K,bt,1) = Uarray(I,J,K,be,1) |
| 166 |
ENDDO |
| 167 |
ENDDO |
| 168 |
DO J = 1,sNy+1 |
| 169 |
DO I = 1,exchWidthX |
| 170 |
Varray(sNx+I,J,K,bt,1) = Varray(I,J,K,be,1) |
| 171 |
ENDDO |
| 172 |
ENDDO |
| 173 |
C Tile Odd:Odd-2 [get] [West<-North] |
| 174 |
DO J = 1,sNy |
| 175 |
DO I = 1,exchWidthX |
| 176 |
Uarray(1-I,J,K,bt,1) = Varray(sNx+1-J,sNy+1-I,K,bw,1) |
| 177 |
ENDDO |
| 178 |
ENDDO |
| 179 |
DO J = 1,sNy+1 |
| 180 |
DO I = 1,exchWidthX |
| 181 |
Varray(1-I,J,K,bt,1) = negOne*Uarray(sNx+2-J,sNy+1-I,K,bw,1) |
| 182 |
ENDDO |
| 183 |
ENDDO |
| 184 |
|
| 185 |
ENDDO |
| 186 |
|
| 187 |
bt = bl+1 |
| 188 |
bn=tilemod(bt+1) |
| 189 |
bs=tilemod(bt-2) |
| 190 |
be=tilemod(bt+2) |
| 191 |
bw=tilemod(bt-1) |
| 192 |
|
| 193 |
DO K = 1,myNz |
| 194 |
|
| 195 |
C Tile Even:Even+1 [get] [North<-South] |
| 196 |
DO J = 1,sNy+1 |
| 197 |
DO I = 1,exchWidthX |
| 198 |
Uarray(J,sNy+I,K,bt,1) = Uarray(J,I,K,bn,1) |
| 199 |
ENDDO |
| 200 |
ENDDO |
| 201 |
DO J = 1,sNy |
| 202 |
DO I = 1,exchWidthX |
| 203 |
Varray(J,sNy+I,K,bt,1) = Varray(J,I,K,bn,1) |
| 204 |
ENDDO |
| 205 |
ENDDO |
| 206 |
C Tile Even:Even-2 [get] [South<-East] |
| 207 |
DO J = 1,sNy+1 |
| 208 |
DO I = 1,exchWidthX |
| 209 |
Uarray(J,1-I,K,bt,1) = negOne*Varray(sNx+1-I,sNy+2-J,K,bs,1) |
| 210 |
ENDDO |
| 211 |
ENDDO |
| 212 |
DO J = 1,sNy |
| 213 |
DO I = 1,exchWidthX |
| 214 |
Varray(J,1-I,K,bt,1) = Uarray(sNx+1-I,sNy+1-J,K,bs,1) |
| 215 |
ENDDO |
| 216 |
ENDDO |
| 217 |
C Tile Even:Even+2 [get] [East<-South] |
| 218 |
DO J = 1,sNy |
| 219 |
DO I = 1,exchWidthX |
| 220 |
Uarray(sNx+I,J,K,bt,1) = Varray(sNx+1-J,I,K,be,1) |
| 221 |
ENDDO |
| 222 |
ENDDO |
| 223 |
DO J = 1,sNy+1 |
| 224 |
DO I = 1,exchWidthX |
| 225 |
Varray(sNx+I,J,K,bt,1) = negOne*Uarray(sNx+2-J,I,K,be,1) |
| 226 |
ENDDO |
| 227 |
ENDDO |
| 228 |
C Tile Even:Even-1 [get] [West<-East] |
| 229 |
DO J = 1,sNy |
| 230 |
DO I = 1,exchWidthX |
| 231 |
Uarray(1-I,J,K,bt,1) = Uarray(sNx+1-I,J,K,bw,1) |
| 232 |
ENDDO |
| 233 |
ENDDO |
| 234 |
DO J = 1,sNy+1 |
| 235 |
DO I = 1,exchWidthX |
| 236 |
Varray(1-I,J,K,bt,1) = Varray(sNx+1-I,J,K,bw,1) |
| 237 |
ENDDO |
| 238 |
ENDDO |
| 239 |
|
| 240 |
ENDDO |
| 241 |
|
| 242 |
ENDDO |
| 243 |
|
| 244 |
C Fix degeneracy at corners |
| 245 |
IF (.FALSE.) THEN |
| 246 |
c IF (withSigns) THEN |
| 247 |
DO bt = 1, 6 |
| 248 |
DO K = 1,myNz |
| 249 |
C Top left |
| 250 |
Utmp=0.5*(Uarray(1,sNy,K,bt,1)+Uarray(0,sNy,K,bt,1)) |
| 251 |
Vtmp=0.5*(Varray(0,sNy+1,K,bt,1)+Varray(0,sNy,K,bt,1)) |
| 252 |
Varray(0,sNx+1,K,bt,1)=(Vtmp-Utmp)*0.70710678 |
| 253 |
Utmp=0.5*(Uarray(1,sNy+1,K,bt,1)+Uarray(2,sNy+1,K,bt,1)) |
| 254 |
Vtmp=0.5*(Varray(1,sNy+1,K,bt,1)+Varray(1,sNy+2,K,bt,1)) |
| 255 |
Uarray(1,sNy+1,K,bt,1)=(Utmp-Vtmp)*0.70710678 |
| 256 |
C Bottom right |
| 257 |
Utmp=0.5*(Uarray(sNx+1,1,K,bt,1)+Uarray(sNx+2,1,K,bt,1)) |
| 258 |
Vtmp=0.5*(Varray(sNx+1,1,K,bt,1)+Varray(sNx+1,2,K,bt,1)) |
| 259 |
Varray(sNx+1,1,K,bt,1)=(Vtmp-Utmp)*0.70710678 |
| 260 |
Utmp=0.5*(Uarray(sNx+1,0,K,bt,1)+Uarray(sNx,0,K,bt,1)) |
| 261 |
Vtmp=0.5*(Varray(sNx,1,K,bt,1)+Varray(sNx,0,K,bt,1)) |
| 262 |
Uarray(sNx+1,0,K,bt,1)=(Utmp-Vtmp)*0.70710678 |
| 263 |
C Bottom left |
| 264 |
Utmp=0.5*(Uarray(1,1,K,bt,1)+Uarray(0,1,K,bt,1)) |
| 265 |
Vtmp=0.5*(Varray(0,1,K,bt,1)+Varray(0,2,K,bt,1)) |
| 266 |
Varray(0,1,K,bt,1)=(Vtmp+Utmp)*0.70710678 |
| 267 |
Utmp=0.5*(Uarray(1,0,K,bt,1)+Uarray(2,0,K,bt,1)) |
| 268 |
Vtmp=0.5*(Varray(1,1,K,bt,1)+Varray(1,0,K,bt,1)) |
| 269 |
Uarray(1,0,K,bt,1)=(Utmp+Vtmp)*0.70710678 |
| 270 |
C Top right |
| 271 |
Utmp=0.5*(Uarray(sNx+1,sNy,K,bt,1)+Uarray(sNx+2,sNy,K,bt,1)) |
| 272 |
Vtmp=0.5*(Varray(sNx+1,sNy+1,K,bt,1)+Varray(sNx+1,sNy,K,bt,1)) |
| 273 |
Varray(sNx+1,sNy+1,K,bt,1)=(Vtmp+Utmp)*0.70710678 |
| 274 |
Utmp=0.5*(Uarray(sNx+1,sNy+1,K,bt,1)+Uarray(sNx,sNy+1,K,bt,1)) |
| 275 |
Vtmp=0.5*(Varray(sNx,sNy+1,K,bt,1)+Varray(sNx,sNy+2,K,bt,1)) |
| 276 |
Uarray(sNx+1,sNy+1,K,bt,1)=(Utmp+Vtmp)*0.70710678 |
| 277 |
ENDDO |
| 278 |
ENDDO |
| 279 |
ENDIF |
| 280 |
|
| 281 |
ENDDO |
| 282 |
|
| 283 |
ENDIF |
| 284 |
CALL BAR2(myThid) |
| 285 |
|
| 286 |
RETURN |
| 287 |
END |