1 |
C $Header: /u/gcmpack/models/MITgcmUV/eesupp/inc/CPP_EEOPTIONS.h,v 1.13 2000/03/14 16:16:01 adcroft Exp $ |
2 |
C |
3 |
C /==========================================================\ |
4 |
C | CPP_EEMACROS.h | |
5 |
C |==========================================================| |
6 |
C | C preprocessor "execution environment" supporting | |
7 |
C | macros. Use this file to define macros for simplifying | |
8 |
C | execution environment in which a model runs - as opposed | |
9 |
C | to the dynamical problem the model solves. | |
10 |
C \==========================================================/ |
11 |
|
12 |
#ifndef _CPP_EEMACROS_H_ |
13 |
#define _CPP_EEMACROS_H_ |
14 |
|
15 |
C In general the following convention applies: |
16 |
C ALLOW - indicates an feature will be included but it may |
17 |
C CAN have a run-time flag to allow it to be switched |
18 |
C on and off. |
19 |
C If ALLOW or CAN directives are "undef'd" this generally |
20 |
C means that the feature will not be available i.e. it |
21 |
C will not be included in the compiled code and so no |
22 |
C run-time option to use the feature will be available. |
23 |
C |
24 |
C ALWAYS - indicates the choice will be fixed at compile time |
25 |
C so no run-time option will be present |
26 |
|
27 |
C Flag used to indicate which flavour of multi-threading |
28 |
C compiler directives to use. Only set one of these. |
29 |
C USE_SOLARIS_THREADING - Takes directives for SUN Workshop |
30 |
C compiler. |
31 |
C USE_KAP_THREADING - Takes directives for Kuck and |
32 |
C Associates multi-threading compiler |
33 |
C ( used on Digital platforms ). |
34 |
C USE_IRIX_THREADING - Takes directives for SGI MIPS |
35 |
C Pro Fortran compiler. |
36 |
C USE_EXEMPLAR_THREADING - Takes directives for HP SPP series |
37 |
C compiler. |
38 |
C USE_C90_THREADING - Takes directives for CRAY/SGI C90 |
39 |
C system F90 compiler. |
40 |
#ifdef TARGET_SUN |
41 |
#define USE_SOLARIS_THREADING |
42 |
#endif |
43 |
|
44 |
#ifdef TARGET_DEC |
45 |
#define USE_KAP_THREADING |
46 |
#endif |
47 |
|
48 |
#ifdef TARGET_SGI |
49 |
#define USE_IRIX_THREADING |
50 |
#endif |
51 |
|
52 |
#ifdef TARGET_HP |
53 |
#define USE_EXEMPLAR_THREADING |
54 |
#endif |
55 |
|
56 |
#ifdef TARGET_CRAY_VECTOR |
57 |
#define USE_C90_THREADING |
58 |
#endif |
59 |
|
60 |
C-- Define the mapping for the _BARRIER macro |
61 |
C On some systems low-level hardware support can be accessed through |
62 |
C compiler directives here. |
63 |
#define _BARRIER CALL BARRIER(myThid) |
64 |
|
65 |
C-- Define the mapping for the BEGIN_CRIT() and END_CRIT() macros. |
66 |
C On some systems we simply execute this section only using the |
67 |
C master thread i.e. its not really a critical section. We can |
68 |
C do this because we do not use critical sections in any critical |
69 |
C sections of our code! |
70 |
#define _BEGIN_CRIT(a) _BEGIN_MASTER(a) |
71 |
#define _END_CRIT(a) _END_MASTER(a) |
72 |
|
73 |
C-- Define the mapping for the BEGIN_MASTER_SECTION() and |
74 |
C END_MASTER_SECTION() macros. These are generally implemented by |
75 |
C simply choosing a particular thread to be "the master" and have |
76 |
C it alone execute the BEGIN_MASTER..., END_MASTER.. sections. |
77 |
#define _BEGIN_MASTER(a) IF ( a .EQ. 1 ) THEN |
78 |
#define _END_MASTER(a) ENDIF |
79 |
|
80 |
C-- Control use of JAM routines for Artic network |
81 |
C These invoke optimized versions of "exchange" and "sum" that |
82 |
C utilize the programmable aspect of Artic cards. |
83 |
#ifdef LETS_MAKE_JAM |
84 |
#define _JAMEXT _jam |
85 |
#else |
86 |
#define _JAMEXT |
87 |
#endif |
88 |
|
89 |
C-- Control storage of floating point operands |
90 |
C On many systems it improves performance only to use |
91 |
C 8-byte precision for time stepped variables. |
92 |
C Constant in time terms ( geometric factors etc.. ) |
93 |
C can use 4-byte precision, reducing memory utilisation and |
94 |
C boosting performance because of a smaller working |
95 |
C set size. However, on vector CRAY systems this degrades |
96 |
C performance. |
97 |
#ifdef REAL4_IS_SLOW |
98 |
#define _RS Real*8 |
99 |
#define RS_IS_REAL8 |
100 |
#define _EXCH_XY_R4(a,b) CALL EXCH_XY_R8 _JAMEXT ( a, b ) |
101 |
#define _EXCH_XYZ_R4(a,b) CALL EXCH_XYZ_R8 _JAMEXT ( a, b ) |
102 |
#define _GLOBAL_SUM_R4(a,b) CALL GLOBAL_SUM_R8 _JAMEXT ( a, b) |
103 |
#define _GLOBAL_MAX_R4(a,b) CALL GLOBAL_MAX_R8 ( a, b ) |
104 |
#else |
105 |
#define _RS Real*4 |
106 |
#define RS_IS_REAL4 |
107 |
#define _EXCH_XY_R4(a,b) CALL EXCH_XY_R4 ( a, b ) |
108 |
#define _EXCH_XYZ_R4(a,b) CALL EXCH_XYZ_R4 ( a, b ) |
109 |
#define _GLOBAL_SUM_R4(a,b) CALL GLOBAL_SUM_R4 ( a, b ) |
110 |
#define _GLOBAL_MAX_R4(a,b) CALL GLOBAL_MAX_R4 ( a, b ) |
111 |
#endif |
112 |
|
113 |
#define _RL Real*8 |
114 |
#define _EXCH_XY_R8(a,b) CALL EXCH_XY_R8 _JAMEXT ( a, b ) |
115 |
#define _EXCH_XYZ_R8(a,b) CALL EXCH_XYZ_R8 _JAMEXT ( a, b ) |
116 |
#define _GLOBAL_SUM_R8(a,b) CALL GLOBAL_SUM_R8 _JAMEXT ( a, b ) |
117 |
#define _GLOBAL_MAX_R8(a,b) CALL GLOBAL_MAX_R8 ( a, b ) |
118 |
|
119 |
C-- Control use of "double" precision constants. |
120 |
C Use D0 where it means REAL*8 but not where it means REAL*16 |
121 |
#ifdef REAL_D0_IS_16BYTES |
122 |
#define D0 |
123 |
#endif |
124 |
|
125 |
C-- Substitue for 1.D variables |
126 |
C Sun compilers do not use 8-byte precision for literals |
127 |
C unless .Dnn is specified. CRAY vector machines use 16-byte |
128 |
C precision when they see .Dnn which runs very slowly! |
129 |
#ifdef REAL_D0_IS_16BYTES |
130 |
#define _d |
131 |
#define _F64( a ) a |
132 |
#endif |
133 |
#ifndef REAL_D0_IS_16BYTES |
134 |
#define _d D |
135 |
#define _F64( a ) DFLOAT( a ) |
136 |
#endif |
137 |
|
138 |
#endif /* _CPP_EEMACROS_H_ */ |