/[MITgcm]/www.ecco-group.org/ecco_2016_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2016_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by dimitri, Thu May 5 13:53:08 2016 UTC revision 1.13 by gforget, Wed Mar 1 15:56:13 2017 UTC
# Line 1  Line 1 
1    <ul><li>
2    Ashkezari, M., Hill, C. N., Follett, C., Forget, G., and Follows, M., 2016:
3    <a href="http://dx.doi.org/10.1002/2016GL071269">
4    Oceanic eddy detection and lifetime forecast using machine learning methods.</a> Geophys. Res. Lett., http://dx.doi.org/10.1002/2016GL071269
5    </li></ul>
6    
7    <ul><li>
8    P. Bender and C. Betts, 2016: Ocean calibration approach for data from the
9    GRACE Follow-On mission. J. Geophys. Res, 121, 1218-1235.
10    </li></ul>
11    
12  <ul><li>  <ul><li>
13  Chaudhuri, A., R. M. Ponte, and G. Forget, 2016:  A. Chaudhuri, R. Ponte, and G. Forget, 2016:
14  <a href="http://www.sciencedirect.com/science/article/pii/S1463500316000226">  <a href="http://www.sciencedirect.com/science/article/pii/S1463500316000226">
15  Impact of uncertainties in atmospheric boundary conditions on ocean model solutions.  Impact of uncertainties in atmospheric boundary conditions on ocean model
16  </a> Ocean Modelling, doi:10.1016/j.ocemod.2016.02.0  solutions.</a> Ocean Model., 100, 96-108.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  Chevallier, M., et al., 2016:  M. Chevallier, et al., 2016:
21  <a href="http://link.springer.com/article/10.1007/s00382-016-2985-y">  <a href="http://link.springer.com/article/10.1007/s00382-016-2985-y">
22  Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project.  Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses
23  </a> Climate Dynamics, doi:10.1007/s00382-016-2985-y  from the ORA-IP project.</a> Clim.Dyn., doi:10.1007/s00382-016-2985-y
24  </li></ul>  </li></ul>
25    
26  <ul><li>  <ul><li>
27  Danabasoglu, H., et al., 2016:  H. Danabasoglu, et al., 2016:
28  <a href="http://www.sciencedirect.com/science/article/pii/S1463500315002231">  <a href="http://www.sciencedirect.com/science/article/pii/S1463500315002231">
29  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments
30  </a> Ocean Modelling, doi:10.1016/j.ocemod.2015.11.007  phase II (CORE-II). Part II: Inter-annual to decadal variability.
31    </a> Ocean Model., 97, 65-90.
32  </li></ul>  </li></ul>
33    
   
34  <ul><li>  <ul><li>
35  N. Ngeve, T. Van der Stocken, D. Menemenlis, N. Koedam, and L. Triest, 2016:  N. Ngeve, T. Van der Stocken, D. Menemenlis, N. Koedam, and L. Triest, 2016:
36  <a href="http://ecco2.org/manuscripts/2016/Ngeve2016.pdf">  <a href="http://ecco2.org/manuscripts/2016/Ngeve2016.pdf">
# Line 31  mangroves.</a> PLoS ONE 11(3): e0150950. Line 40  mangroves.</a> PLoS ONE 11(3): e0150950.
40  </li></ul>  </li></ul>
41    
42  <ul><li>  <ul><li>
43  V. Ocana, E. Zorita, and P. Heimbach, 2016:  V. Ocana, E. Zorita, and P. Heimbach, 2016: Stochastic secular trends in sea
44  Stochastic secular trends in sea level rise. J. Geophys. Res,, in press, doi:10.1002/2015JC011301  level rise. J. Geophys. Res, 121, 2183-2202.
45  </li></ul>  </li></ul>
46    
47  <ul><li>  <ul><li>
48  C. G. Piecuch, S. Dangendorf, R. M. Ponte, and M. Marcos, 2016: Annual  C. Piecuch, S. Dangendorf, R. Ponte, and M. Marcos, 2016: Annual
49  sea level changes on the North American northeast  sea level changes on the North American northeast coast: influence of local
50  coast: influence of local winds and barotropic motions. J. Clim., in  winds and barotropic motions. J. Clim., 29, 4801-4816.
 press.  
51  </li></ul>  </li></ul>
52    
53  <ul><li>  <ul><li>
54  H. R. Pillar, P. Heimbach, H.L. Johnson, and D.P. Marshall, 2016: Dynamical attribution of recent variability in Atlantic overturning. J. Clim., in press, doi:10.1175/JCLI-D-15-0727.1  H. Pillar, P. Heimbach, H. Johnson, and D. Marshall, 2016: Dynamical
55    attribution of recent variability in Atlantic overturning. J. Clim., 29,
56    3339-3352.
57  </li></ul>  </li></ul>
58    
59  <ul><li>  <ul><li>
60  R. M. Ponte and N. T. Vinogradova, 2016: An assessment of basic  R. Ponte and N. Vinogradova, 2016: An assessment of basic
61  processes controlling mean surface salinity over the global  processes controlling mean surface salinity over the global
62  ocean. Geophys. Res. Lett., submitted.  ocean. Geophys. Res. Lett., 10.1002/2016GL069857
63    </li></ul>
64    
65    <ul><li>
66    E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li,
67    M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and
68    B. de Fleurian, 2016:
69    <a href="http://onlinelibrary.wiley.com/doi/10.1002/2016GL068784/full">
70    Modeling of ocean-induced icemelt rates of five west Greenland glaciers over
71    the past two decades.</a> Geophys. Res. Lett., 43, 6374-6382.
72  </li></ul>  </li></ul>
73    
74  <ul><li>  <ul><li>
# Line 63  submesoscale wavenumber spectra in Drake Line 82  submesoscale wavenumber spectra in Drake
82  M. Schodlok, D. Menemenlis, and E. J. Rignot, 2016:  M. Schodlok, D. Menemenlis, and E. J. Rignot, 2016:
83  <a href="http://ecco2.org/manuscripts/2016/Schodlok2016.pdf"> Ice shelf basal  <a href="http://ecco2.org/manuscripts/2016/Schodlok2016.pdf"> Ice shelf basal
84  melt rates around Antarctica from simulations and observations.</a>  melt rates around Antarctica from simulations and observations.</a>
85  J. Geophys. Res., doi:10.1002/2015JC011117  J. Geophys. Res., 121, 1085-1109.
86  </li></ul>  </li></ul>
87    
88  <ul><li>  <ul><li>
89  H. Song, Marshall, J., Follows, M., Dutkiewicz, S., and G. Forget, 2016:  H. Song, Marshall, J., Follows, M., Dutkiewicz, S., and G. Forget, 2016:
90  <a href="http://www.sciencedirect.com/science/article/pii/S0924796316000452">  <a href="http://www.sciencedirect.com/science/article/pii/S0924796316000452">
91  Source waters for the highly productive Patagonian shelf in the southwestern Atlantic.  Source waters for the highly productive Patagonian shelf in the southwestern Atlantic.
92  </a> JMS, doi:10.1016/j.jmarsys.2016.02.009  </a> J. Mar. Syst., 158, 120-128.
93  </li></ul>  </li></ul>
94    
95  <ul><li>  <ul><li>
96  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen,  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen,
97  2016: <a href="http://www.the-cryosphere-discuss.net/tc-2016-13/">  2016: <a href="http://www.the-cryosphere-discuss.net/tc-2016-13/">
98  Sea ice deformation in a coupled ocean-sea ice model and in satellite  Sea ice deformation in a coupled ocean-sea ice model and in satellite
99  remote sensing data.</a> The Cryosphere, submitted.  remote sensing data.</a> The Cryosphere, 10.5194/tc-2016-13
100  </li></ul>  </li></ul>
101    
102  <ul><li>  <ul><li>
103  D. Stammer, M. Balmaseda, P. Heimbach, A.Koehl, and A. Weaver, 2016: Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives. Ann. Rev. Mar. Sci., 8, 491-518, doi:10.1146/annurev-marine-122414-034113  D. Stammer, M. Balmaseda, P. Heimbach, A.Koehl, and A. Weaver, 2016: Ocean
104    Data Assimilation in Support of Climate Applications: Status and
105    Perspectives. Ann. Rev. Mar. Sci., 8, 491-518.
106  </li></ul>  </li></ul>
107    
108  <ul><li>  <ul><li>
109  C. Wunsch, 2016: Global Ocean Integrals and Means, with Trend Implications. Ann. Rev. Mar. Sci., 8, 1-33, doi:10.1146/annurev-marine-122414-034040.  C. Wunsch, 2016: Global Ocean Integrals and Means, with Trend
110    Implications. Ann. Rev. Mar. Sci., 8, 1-33.
111  </li></ul>  </li></ul>
   
   

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.13

  ViewVC Help
Powered by ViewVC 1.1.22