|
|
|
|
|
|
| 1 |
<ul><li> |
<ul><li> |
| 2 |
Song, H., Marshall, J., Follows, M., Dutkiewicz, S., and G. Forget, 2016: |
P. Bender and C. Betts, 2016: Ocean calibration approach for data from the |
| 3 |
<a href="http://www.sciencedirect.com/science/article/pii/S0924796316000452"> |
GRACE Follow-On mission. J. Geophys. Res, 121, 1218-1235. |
|
Source waters for the highly productive Patagonian shelf in the southwestern Atlantic. |
|
|
</a> JMS, doi:10.1016/j.jmarsys.2016.02.009 |
|
| 4 |
</li></ul> |
</li></ul> |
| 5 |
|
|
| 6 |
<ul><li> |
<ul><li> |
| 7 |
Chaudhuri, A., R. M. Ponte, and G. Forget, 2016: |
A. Chaudhuri, R. Ponte, and G. Forget, 2016: |
| 8 |
<a href="http://www.sciencedirect.com/science/article/pii/S1463500316000226"> |
<a href="http://www.sciencedirect.com/science/article/pii/S1463500316000226"> |
| 9 |
Impact of uncertainties in atmospheric boundary conditions on ocean model solutions. |
Impact of uncertainties in atmospheric boundary conditions on ocean model |
| 10 |
</a> Ocean Modelling, doi:10.1016/j.ocemod.2016.02.0 |
solutions.</a> Ocean Model., 100, 96-108. |
| 11 |
</li></ul> |
</li></ul> |
| 12 |
|
|
| 13 |
<ul><li> |
<ul><li> |
| 14 |
Chevallier, M., et al., 2016: |
M. Chevallier, et al., 2016: |
| 15 |
<a href="http://link.springer.com/article/10.1007/s00382-016-2985-y"> |
<a href="http://link.springer.com/article/10.1007/s00382-016-2985-y"> |
| 16 |
Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project. |
Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses |
| 17 |
</a> Climate Dynamics, doi:10.1007/s00382-016-2985-y |
from the ORA-IP project.</a> Clim.Dyn., doi:10.1007/s00382-016-2985-y |
| 18 |
</li></ul> |
</li></ul> |
| 19 |
|
|
| 20 |
<ul><li> |
<ul><li> |
| 21 |
Danabasoglu, H., et al., 2016: |
H. Danabasoglu, et al., 2016: |
| 22 |
<a href="http://www.sciencedirect.com/science/article/pii/S1463500315002231"> |
<a href="http://www.sciencedirect.com/science/article/pii/S1463500315002231"> |
| 23 |
North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. |
North Atlantic simulations in Coordinated Ocean-ice Reference Experiments |
| 24 |
</a> Ocean Modelling, doi:10.1016/j.ocemod.2015.11.007 |
phase II (CORE-II). Part II: Inter-annual to decadal variability. |
| 25 |
|
</a> Ocean Model., 97, 65-90. |
| 26 |
</li></ul> |
</li></ul> |
| 27 |
|
|
|
|
|
| 28 |
<ul><li> |
<ul><li> |
| 29 |
N. Ngeve, T. Van der Stocken, D. Menemenlis, N. Koedam, and L. Triest, 2016: |
N. Ngeve, T. Van der Stocken, D. Menemenlis, N. Koedam, and L. Triest, 2016: |
| 30 |
<a href="http://ecco2.org/manuscripts/2016/Ngeve2016.pdf"> |
<a href="http://ecco2.org/manuscripts/2016/Ngeve2016.pdf"> |
| 34 |
</li></ul> |
</li></ul> |
| 35 |
|
|
| 36 |
<ul><li> |
<ul><li> |
| 37 |
|
V. Ocana, E. Zorita, and P. Heimbach, 2016: Stochastic secular trends in sea |
| 38 |
|
level rise. J. Geophys. Res, 121, 2183-2202. |
| 39 |
|
</li></ul> |
| 40 |
|
|
| 41 |
|
<ul><li> |
| 42 |
|
C. Piecuch, S. Dangendorf, R. Ponte, and M. Marcos, 2016: Annual |
| 43 |
|
sea level changes on the North American northeast coast: influence of local |
| 44 |
|
winds and barotropic motions. J. Clim., 29, 4801-4816. |
| 45 |
|
</li></ul> |
| 46 |
|
|
| 47 |
|
<ul><li> |
| 48 |
|
H. Pillar, P. Heimbach, H. Johnson, and D. Marshall, 2016: Dynamical |
| 49 |
|
attribution of recent variability in Atlantic overturning. J. Clim., 29, |
| 50 |
|
3339-3352. |
| 51 |
|
</li></ul> |
| 52 |
|
|
| 53 |
|
<ul><li> |
| 54 |
|
R. Ponte and N. Vinogradova, 2016: An assessment of basic |
| 55 |
|
processes controlling mean surface salinity over the global |
| 56 |
|
ocean. Geophys. Res. Lett., 10.1002/2016GL069857 |
| 57 |
|
</li></ul> |
| 58 |
|
|
| 59 |
|
<ul><li> |
| 60 |
|
E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, |
| 61 |
|
M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and |
| 62 |
|
B. de Fleurian, 2016: |
| 63 |
|
<a href="http://onlinelibrary.wiley.com/doi/10.1002/2016GL068784/full"> |
| 64 |
|
Modeling of ocean-induced icemelt rates of five west Greenland glaciers over |
| 65 |
|
the past two decades.</a> Geophys. Res. Lett., 43, 6374-6382. |
| 66 |
|
</li></ul> |
| 67 |
|
|
| 68 |
|
<ul><li> |
| 69 |
C. Rocha, T. Chereskin, S. Gille, and D. Menemenlis, 2016: |
C. Rocha, T. Chereskin, S. Gille, and D. Menemenlis, 2016: |
| 70 |
<a href="http://ecco2.org/manuscripts/2016/Rocha2016.pdf"> Mesoscale to |
<a href="http://ecco2.org/manuscripts/2016/Rocha2016.pdf"> Mesoscale to |
| 71 |
submesoscale wavenumber spectra in Drake Passage.</a> J. Phys. Oceanogr., |
submesoscale wavenumber spectra in Drake Passage.</a> J. Phys. Oceanogr., 46, |
| 72 |
doi:10.1175/JPO-D-15-0087.1 |
601-620. |
| 73 |
</li></ul> |
</li></ul> |
| 74 |
|
|
| 75 |
<ul><li> |
<ul><li> |
| 76 |
M. Schodlok, D. Menemenlis, and E. J. Rignot, 2016: |
M. Schodlok, D. Menemenlis, and E. J. Rignot, 2016: |
| 77 |
<a href="http://ecco2.org/manuscripts/2016/Schodlok2016.pdf"> Ice shelf basal |
<a href="http://ecco2.org/manuscripts/2016/Schodlok2016.pdf"> Ice shelf basal |
| 78 |
melt rates around Antarctica from simulations and observations.</a> |
melt rates around Antarctica from simulations and observations.</a> |
| 79 |
J. Geophys. Res., doi:10.1002/2015JC011117 |
J. Geophys. Res., 121, 1085-1109. |
| 80 |
|
</li></ul> |
| 81 |
|
|
| 82 |
|
<ul><li> |
| 83 |
|
H. Song, Marshall, J., Follows, M., Dutkiewicz, S., and G. Forget, 2016: |
| 84 |
|
<a href="http://www.sciencedirect.com/science/article/pii/S0924796316000452"> |
| 85 |
|
Source waters for the highly productive Patagonian shelf in the southwestern Atlantic. |
| 86 |
|
</a> J. Mar. Syst., 158, 120-128. |
| 87 |
</li></ul> |
</li></ul> |
| 88 |
|
|
| 89 |
<ul><li> |
<ul><li> |
| 90 |
G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, |
G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, |
| 91 |
2016: <a href="http://www.the-cryosphere-discuss.net/tc-2016-13/"> |
2016: <a href="http://www.the-cryosphere-discuss.net/tc-2016-13/"> |
| 92 |
Sea ice deformation in a coupled ocean-sea ice model and in satellite |
Sea ice deformation in a coupled ocean-sea ice model and in satellite |
| 93 |
remote sensing data.</a> The Cryosphere, submitted. |
remote sensing data.</a> The Cryosphere, 10.5194/tc-2016-13 |
| 94 |
|
</li></ul> |
| 95 |
|
|
| 96 |
|
<ul><li> |
| 97 |
|
D. Stammer, M. Balmaseda, P. Heimbach, A.Koehl, and A. Weaver, 2016: Ocean |
| 98 |
|
Data Assimilation in Support of Climate Applications: Status and |
| 99 |
|
Perspectives. Ann. Rev. Mar. Sci., 8, 491-518. |
| 100 |
</li></ul> |
</li></ul> |
| 101 |
|
|
| 102 |
<ul><li> |
<ul><li> |
| 103 |
S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and |
C. Wunsch, 2016: Global Ocean Integrals and Means, with Trend |
| 104 |
I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent |
Implications. Ann. Rev. Mar. Sci., 8, 1-33. |
|
vertical mixing using seasonally averaged observations from the |
|
|
TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision. |
|
| 105 |
</li></ul> |
</li></ul> |