/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.28 - (show annotations) (download) (as text)
Sat Jul 9 04:57:32 2016 UTC (2 years, 4 months ago) by dimitri
Branch: MAIN
CVS Tags: HEAD
Changes since 1.27: +14 -1 lines
File MIME type: text/html
adding Ichiro's corrections

1 <ul><li>
2 M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3 (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4 </li></ul>
5
6 <ul><li>
7 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
8 K. Bowman, and H. Zhang, 2015:
9 <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10 Green's Functions to initialize and adjust a global, eddying ocean
11 biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12 </li></ul>
13
14 <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15 the origins of advective heat transport variability in the North Atlantic. J.
16 Clim., 18, 3943-3956.
17 </li></ul>
18
19 <ul><li>
20 R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21 Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22 45, 387-406.
23 </li></ul>
24
25 <ul><li>
26 P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
27 2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
28 importance of vertical resolution in sea ice algae production models.</a>
29 J. Mar. Syst., 145, 69-90.
30 </li></ul>
31
32 <ul><li>
33 I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34 <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35 Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36 doi:10.1007/s00382-015-2796-6
37 </li></ul>
38
39 <ul><li>
40 M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41 <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42 Role of tides on the formation of the Antarctic Slope Front at the
43 Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44 </li></ul>
45
46 <ul><li>
47 G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48 turbulent transport rates by argo: supporting evidence from an
49 inversion experiment. Ocean Science, 11, 839-853.
50 </li></ul>
51
52 <ul><li>
53 G. Forget and R.M. Ponte, 2015:
54 <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55 The partition of regional sea level variability.</a> Prog. Oceanogr.,
56 137, 173-195.
57 </ul></li>
58
59 <ul><li>
60 G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61 C. Wunsch, 2015:
62 <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63 ECCO version 4: an integrated framework for non-linear inverse
64 modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65 3071-3104.
66 </ul></li>
67
68 <ul><li>
69 The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70 <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71 Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72 CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73 </ul></li>
74
75 <ul><li>
76 I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77 Examples from the Consortium for Estimating the Circulation and Climate of the
78 Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79 Les Houches School of Physics: Special Issue, June 2012.
80 </li></ul>
81
82 <ul><li>
83 I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84 fluctuation of ocean bottom pressure and sea level across the deep ocean
85 basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86 </li></ul>
87
88 <ul><li>
89 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90 2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91 Quantifying the processes controlling intraseasonal mixed-layer temperature
92 variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
93 </li></ul>
94
95 <ul><li>
96 D. Halpern, D. Menemenlis, and X. Wang,
97 2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf">
98 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
99 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
100 Tech., 32, 131-143.
101 </li></ul>
102
103 <ul><li>
104 P. Heimbach, 2015: Application of derivative code in climate modeling.
105 in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106 Adjoint Methods in Computational Science, Engineering, and Finance.
107 Dagstuhl Reports, 4, 14-16.
108 </li></ul>
109
110 <ul><li>
111 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112 <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113 Modeling the impact of riverine DON removal by marine bacterioplankton on
114 primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115 </li></ul>
116
117 <ul><li>
118 X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119 Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120 </ul></li>
121
122 <ul><li>
123 K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124 Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125 Floats. J. Phys. Oceanogr., 45, 1773-1793.
126 </ul></li>
127
128 <ul><li>
129 L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
130 K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
131 2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
132 magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
133 from NASA's Carbon Monitoring Flux Pilot Project.</a> J. Geophys. Res., 120,
134 734-765.
135 </li></ul>
136
137 <ul><li>
138 C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic
139 Rossby waves in the northeast tropical Pacific Ocean. J. Geophys.
140 Res., 120, 2449-2459.
141 </li></ul>
142
143 <ul><li>
144 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145 structure of ocean pressure fluctuations with application to
146 satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
147 </li></ul>
148
149 <ul><li>
150 C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151 of contemporary sea level trends in a global ocean state estimate to effects
152 of geothermal fluxes, Ocean Model., 96, 214-220.
153 </li></ul>
154
155 <ul><li>
156 K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
157 and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
158 </li></ul>
159
160 <ul><li>
161 A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
162 ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
163 doi:10.1007/s00382-015-2554-9
164 </li></ul>
165
166 <ul><li>
167 Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
168 mixed layer depths in the north pacific detected by an ensemble of ocean
169 syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
170 </li></ul>
171
172 <ul><li>
173 T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
174 mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
175 doi:10.1007/s00382-015-2637-7
176 </li></ul>
177
178 <ul><li>
179 T. Van der Stocken, 2015:
180 <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
181 environmental drivers of mangrove propagule dispersal: A field and modeling
182 approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite
183 Libre de Bruxelles.
184 </li></ul>
185
186 <ul><li>
187 E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics
188 of Agulhas rings affect interocean plankton transport, Science, Vol. 348,
189 6237.
190 </li></ul>
191
192 <ul><li>
193 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
194 2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
195 Loading Effects. J. Phys. Oceanogr., 45, 678-689.
196 </li></ul>
197
198 <ul><li>
199 X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
200 <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
201 Regional ocean forecasting systems and their applications: Design
202 consideration of such a system for the South China Sea.</a>
203 Aquat. Ecosyst. Health Manag., 18, 443-453.
204 </li></ul>
205
206 <ul><li>
207 J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
208 2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
209 river discharge and river temperature climatology data set for the
210 pan-Arctic region.</a> Ocean Model., 88, 1-15.
211 </li></ul>
212
213 <ul><li>
214 C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
215 Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
216 1460-1472.
217 </li></ul>
218
219 <ul><li>
220 V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
221 and the general circulation: Partitioning wind, buoyancy forcing, and
222 irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
223 </li></ul>
224
225 <ul><li>
226 Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
227 Biogeochemical drivers of the fate of riverine mercury discharged to the
228 global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
229 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22