/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.24 - (show annotations) (download) (as text)
Wed Dec 2 16:38:00 2015 UTC (8 years, 4 months ago) by dimitri
Branch: MAIN
Changes since 1.23: +27 -22 lines
File MIME type: text/html
alphabetical reordering and adding Adam's paper

1 <ul><li>
2 R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy
3 mixing in a circumpolar channel. Ocean Modelling, submitted.
4 </li></ul>
5
6 <ul><li>
7 M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
8 (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
9 </li></ul>
10
11 <ul><li>
12 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
13 K. Bowman, and H. Zhang, 2015:
14 <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
15 Green's Functions to initialize and adjust a global, eddying ocean
16 biogeochemistry general circulation model.</a> Ocean Modelling, 95, 1-14.
17 </li></ul>
18
19 <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
20 the origins of advective heat transport variability in the North Atlantic. J.
21 Clim., 18, 3943-3956.
22 </li></ul>
23
24 <ul><li>
25 R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
26 Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
27 45, 387-406.
28 </li></ul>
29
30 <ul><li>
31 K. Childers, 2015:
32 <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
33 Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
34 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
35 </li></ul>
36
37 <ul><li>
38 P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
39 2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
40 importance of vertical resolution in sea ice algae production models.</a>
41 J. Mar. Syst., 145, 69-90.
42 </li></ul>
43
44 <ul><li>
45 I. Fenty, D. Menemenlis, and H. Zhang, 2015:
46 <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
47 Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
48 </li></ul>
49
50 <ul><li>
51 M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
52 <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
53 Role of tides on the formation of the Antarctic Slope Front at the
54 Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
55 </li></ul>
56
57 <ul><li>
58 G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
59 turbulent transport rates by argo: supporting evidence from an
60 inversion experiment. Ocean Science, 11, 839-853.
61 </li></ul>
62
63 <ul><li>
64 G. Forget and R.M. Ponte, 2015:
65 <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
66 The partition of regional sea level variability.</a> Prog. Oceanogr.,
67 137, 173-195.
68 </ul></li>
69
70 <ul><li>
71 G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
72 C. Wunsch, 2015:
73 <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
74 ECCO version 4: an integrated framework for non-linear inverse
75 modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
76 3071-3104.
77 </ul></li>
78
79 <ul><li>
80 G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
81 R.M. Ponte, 2015:
82 <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
83 Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
84 CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
85 </ul></li>
86
87 <ul><li>
88 McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
89 Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
90 Floats. JPO, 45, 1773-1793.
91 </ul></li>
92
93 <ul><li>
94 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
95 <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
96 Modeling the impact of riverine DON removal by marine bacterioplankton on
97 primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
98 </li></ul>
99
100 <ul><li>
101 I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
102 fluctuation of ocean bottom pressure and sea level across the deep ocean
103 basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134,
104 152-172.
105 </ul></li>
106
107 <ul><li>
108 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
109 2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
110 Quantifying the processes controlling intraseasonal mixed-layer temperature
111 variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
112 </li></ul>
113
114 <ul><li>
115 D. Halpern, D. Menemenlis, and X. Wang,
116 2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf">
117 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
118 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
119 Tech., 32, 131-143.
120 </li></ul>
121
122 <ul><li>
123 P. Heimbach, 2015: Application of derivative code in climate modeling.
124 in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
125 Adjoint Methods in Computational Science, Engineering, and Finance.
126 Dagstuhl Reports, 4, 14-16.
127 </li></ul>
128
129 <ul><li>
130 X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
131 Vertical redistribution of oceanic heat. 28, 3821-3833.
132 </ul></li>
133
134 <ul><li>
135 L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
136 K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
137 2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
138 magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
139 from NASA's Carbon Monitoring Flux Pilot Project.</a> J. Geophys. Res., 120,
140 734-765.
141 </li></ul>
142
143 <ul><li>
144 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145 structure of ocean pressure fluctuations with application to
146 satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
147 </li></ul>
148
149 <ul><li>
150 C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151 of contemporary sea level trends in a global ocean state estimate to effects
152 of geothermal fluxes, Ocean Model., in press.
153 </li></ul>
154
155 <ul><li>
156 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice
157 deformation in a coupled ocean-sea ice model and in satellite remote
158 sensing data. J. Geophys. Res., submitted.
159 </li></ul>
160
161 <ul><li>
162 T. Van der Stocken, 2015:
163 <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
164 environmental drivers of mangrove propagule dispersal: A field and modeling
165 approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
166 </li></ul>
167
168 <ul><li>
169 A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
170 ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
171 doi:10.1007/s00382-015-2554-9
172 </li></ul>
173
174 <ul><li>
175 Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
176 mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
177 Climate Dynamics, 1-17.
178 </li></ul>
179
180 <ul><li>
181 T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
182 layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
183 doi:10.1007/s00382-015-2637-7.
184 </li></ul>
185
186 <ul><li>
187 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
188 2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
189 Loading Effects. J. Phys. Oceanogr., 45, 678-689.
190 </li></ul>
191
192 <ul><li>
193 X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
194 <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
195 Regional ocean forecasting systems and their applications: Design
196 consideration of such a system for the South China Sea.</a> Aquatic
197 Ecosystem Health & Management, in press,
198 doi10.1080/14634988.2015.1112123.
199 </li></ul>
200
201 <ul><li>
202 J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
203 2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
204 river discharge and river temperature climatology data set for the
205 pan-Arctic region.</a> Ocean Modelling, 88, 1-15.
206 </li></ul>
207
208 <ul><li>
209 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
210 I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent
211 vertical mixing using seasonally averaged observations from the
212 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
213 </li></ul>
214
215 <ul><li>
216 V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
217 and the general circulation: Partitioning wind, buoyancy forcing, and
218 irreversible mixing. J. Phys. Oceanogr., submitted.
219 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22