/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by dimitri, Wed Feb 11 18:48:02 2015 UTC revision 1.26 by heimbach, Mon May 2 18:54:30 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12  submitted.  </li></ul>
13    
14    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15    the origins of advective heat transport variability in the North Atlantic. J.
16    Clim., 18, 3943-3956. doi:10.1175/JCLI-D-14-00579.1.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Clim., in revision.  45, 387-406.
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 37  J. Mar. Syst., 145, 69-90.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
41    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
42    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
43    doi:10.1007/s00382-015-2796-6
44    </li></ul>
45    
46    <ul><li>
47  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
48  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
49  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
50  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
51    </li></ul>
52    
53    <ul><li>
54    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
55    turbulent transport rates by argo: supporting evidence from an
56    inversion experiment. Ocean Science, 11, 839-853.
57    </li></ul>
58    
59    <ul><li>
60    G. Forget and R.M. Ponte, 2015:
61    <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
62    The partition of regional sea level variability.</a> Prog. Oceanogr.,
63    137, 173-195.
64    </ul></li>
65    
66    <ul><li>
67    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
68    C. Wunsch, 2015:
69    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
70    ECCO version 4: an integrated framework for non-linear inverse
71    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
72    3071-3104. doi:10.5194/gmd-8-3071-2015.
73    </ul></li>
74    
75    <ul><li>
76    The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
77    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
78    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
79    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
80    </ul></li>
81    
82    <ul><li>
83    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
84    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
85    Floats. JPO, 45, 1773-1793.
86    </ul></li>
87    
88    <ul><li>
89    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
90    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
91    Modeling the impact of riverine DON removal by marine bacterioplankton on
92    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
93  </li></ul>  </li></ul>
94    
95  <ul><li>  <ul><li>
96  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
97  variability.  Prog. Oceanogr., submitted.  fluctuation of ocean bottom pressure and sea level across the deep ocean
98    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
99    152-172.
100  </ul></li>  </ul></li>
101    
102  <ul><li>  <ul><li>
103  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
104  Quantifying the processes controlling intraseasonal mixed-layer  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
105  temperature variability in the tropical Indian  Quantifying the processes controlling intraseasonal mixed-layer temperature
106  Ocean. J. Geophys. Res., doi: 10.1002/2014JC010139.  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
107  </li></ul>  </li></ul>
108    
109  <ul><li>  <ul><li>
# Line 60  Tech., 32, 131-143. Line 115  Tech., 32, 131-143.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
119  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
120  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
121  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
122  </li></ul>  </li></ul>
123    
124  <ul><li>  <ul><li>
125  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
126  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833.
127    doi:10.1175/JCLI-D-14-00550.1.
128  </ul></li>  </ul></li>
129    
130  <ul><li>  <ul><li>
131  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
132  K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
133  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
134  magnitude of {CO2} flux uncertainty in atmospheric {CO}2 records using  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
135  products from {NASA's Carbon Monitoring Flux Pilot Project}.</a>  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
136  J. Geophys. Res., 120, doi:10.1002/2014JD022411.  734-765.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
140  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
141  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
142  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
143  </li></ul>  </li></ul>
144    
145  <ul><li>  <ul><li>
146  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
147  deformation in a coupled ocean-sea ice model and in satellite remote  of contemporary sea level trends in a global ocean state estimate to effects
148  sensing data. J. Geophys. Res., submitted.  of geothermal fluxes, Ocean Model., 96, 214-220. doi:10.1016/j.ocemod.2015.10.008.
149  </li></ul>  </li></ul>
150    
151  <ul><li>  <ul><li>
152  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
 and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  
 self-attraction and loading effects, J. Phys. Oceanogr., in press.  
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
156  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,  T. Van der Stocken, 2015:
157  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
158  river discharge and river temperature climatology data set for the  environmental drivers of mangrove propagule dispersal: A field and modeling
159  pan-{Arctic} region.</a> Ocean Modelling, doi:10.1016/j.ocemod.2014.12.012.  approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
160    </li></ul>
161    
162    <ul><li>
163    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
164    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
165    doi:10.1007/s00382-015-2554-9
166    </li></ul>
167    
168    <ul><li>
169    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
170    mixed layer depths in the north pacific detected by an ensemble of ocean
171    syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
172    </li></ul>
173    
174    <ul><li>
175    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
176    mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
177    doi:10.1007/s00382-015-2637-7
178    </li></ul>
179    
180    <ul><li>
181    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
182    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
183    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
184  </li></ul>  </li></ul>
185    
186  <ul><li>  <ul><li>
187  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
188  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
189  vertical mixing using seasonally averaged observations from the  Regional ocean forecasting systems and their applications: Design
190  TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  consideration of such a system for the South China Sea.</a> Aquatic
191    Ecosystem Health & Management, 18, 443-453.
192    </li></ul>
193    
194    <ul><li>
195    J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
196    2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
197    river discharge and river temperature climatology data set for the
198    pan-Arctic region.</a> Ocean Model., 88, 1-15.
199  </li></ul>  </li></ul>
200    
201  <ul><li>  <ul><li>
202  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
203  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
204  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
205  </li></ul>  </li></ul>

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22