/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by dimitri, Wed Feb 11 18:48:02 2015 UTC revision 1.25 by dimitri, Tue Jan 19 18:51:00 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12  submitted.  </li></ul>
13    
14    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15    the origins of advective heat transport variability in the North Atlantic. J.
16    Clim., 18, 3943-3956.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Clim., in revision.  45, 387-406.
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 37  J. Mar. Syst., 145, 69-90.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
41    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
42    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
43    doi:10.1007/s00382-015-2796-6
44    </li></ul>
45    
46    <ul><li>
47  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
48  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
49  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
50  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
51  </li></ul>  </li></ul>
52    
53  <ul><li>  <ul><li>
54  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
55  variability.  Prog. Oceanogr., submitted.  turbulent transport rates by argo: supporting evidence from an
56    inversion experiment. Ocean Science, 11, 839-853.
57    </li></ul>
58    
59    <ul><li>
60    G. Forget and R.M. Ponte, 2015:
61    <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
62    The partition of regional sea level variability.</a> Prog. Oceanogr.,
63    137, 173-195.
64    </ul></li>
65    
66    <ul><li>
67    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
68    C. Wunsch, 2015:
69    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
70    ECCO version 4: an integrated framework for non-linear inverse
71    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
72    3071-3104.
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
77  Quantifying the processes controlling intraseasonal mixed-layer  R.M. Ponte, 2015:
78  temperature variability in the tropical Indian  <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
79  Ocean. J. Geophys. Res., doi: 10.1002/2014JC010139.  Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
80    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
81    </ul></li>
82    
83    <ul><li>
84    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
85    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
86    Floats. JPO, 45, 1773-1793.
87    </ul></li>
88    
89    <ul><li>
90    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
91    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
92    Modeling the impact of riverine DON removal by marine bacterioplankton on
93    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
94    </li></ul>
95    
96    <ul><li>
97    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
98    fluctuation of ocean bottom pressure and sea level across the deep ocean
99    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
100    152-172.
101    </ul></li>
102    
103    <ul><li>
104    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
105    2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
106    Quantifying the processes controlling intraseasonal mixed-layer temperature
107    variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
108  </li></ul>  </li></ul>
109    
110  <ul><li>  <ul><li>
# Line 60  Tech., 32, 131-143. Line 116  Tech., 32, 131-143.
116  </li></ul>  </li></ul>
117    
118  <ul><li>  <ul><li>
119  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
120  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
121  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
122  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
123  </li></ul>  </li></ul>
124    
125  <ul><li>  <ul><li>
126  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
127  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833.
128  </ul></li>  </ul></li>
129    
130  <ul><li>  <ul><li>
131  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
132  K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
133  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
134  magnitude of {CO2} flux uncertainty in atmospheric {CO}2 records using  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
135  products from {NASA's Carbon Monitoring Flux Pilot Project}.</a>  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
136  J. Geophys. Res., 120, doi:10.1002/2014JD022411.  734-765.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
# Line 87  satellite-gravimetric observations. J. A Line 143  satellite-gravimetric observations. J. A
143  </li></ul>  </li></ul>
144    
145  <ul><li>  <ul><li>
146  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
147  deformation in a coupled ocean-sea ice model and in satellite remote  of contemporary sea level trends in a global ocean state estimate to effects
148  sensing data. J. Geophys. Res., submitted.  of geothermal fluxes, Ocean Model., 96, 214-220.
149  </li></ul>  </li></ul>
150    
151  <ul><li>  <ul><li>
152  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
153  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
154  self-attraction and loading effects, J. Phys. Oceanogr., in press.  environmental drivers of mangrove propagule dispersal: A field and modeling
155    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
156  </li></ul>  </li></ul>
157    
158  <ul><li>  <ul><li>
159  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,  A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
160  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new  ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
161  river discharge and river temperature climatology data set for the  doi:10.1007/s00382-015-2554-9
162  pan-{Arctic} region.</a> Ocean Modelling, doi:10.1016/j.ocemod.2014.12.012.  </li></ul>
163    
164    <ul><li>
165    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
166    mixed layer depths in the north pacific detected by an ensemble of ocean
167    syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
168    </li></ul>
169    
170    <ul><li>
171    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
172    mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
173    doi:10.1007/s00382-015-2637-7
174    </li></ul>
175    
176    <ul><li>
177    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
178    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
179    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
180    </li></ul>
181    
182    <ul><li>
183    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
184    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
185    Regional ocean forecasting systems and their applications: Design
186    consideration of such a system for the South China Sea.</a> Aquatic
187    Ecosystem Health & Management, 18, 443-453.
188  </li></ul>  </li></ul>
189    
190  <ul><li>  <ul><li>
191  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
192  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
193  vertical mixing using seasonally averaged observations from the  river discharge and river temperature climatology data set for the
194  TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  pan-Arctic region.</a> Ocean Model., 88, 1-15.
195  </li></ul>  </li></ul>
196    
197  <ul><li>  <ul><li>
198  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
199  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
200  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
201  </li></ul>  </li></ul>

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22