| 1 |
<ul><li> |
<ul><li> |
| 2 |
M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project |
M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project |
| 3 |
(ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97. |
(ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97. |
| 4 |
</li></ul> |
</li></ul> |
| 5 |
|
|
| 6 |
<ul><li> |
<ul><li> |
| 13 |
|
|
| 14 |
<ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining |
<ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining |
| 15 |
the origins of advective heat transport variability in the North Atlantic. J. |
the origins of advective heat transport variability in the North Atlantic. J. |
| 16 |
Clim., 18, 3943-3956. doi:10.1175/JCLI-D-14-00579.1. |
Clim., 18, 3943-3956. |
| 17 |
</li></ul> |
</li></ul> |
| 18 |
|
|
| 19 |
<ul><li> |
<ul><li> |
| 23 |
</li></ul> |
</li></ul> |
| 24 |
|
|
| 25 |
<ul><li> |
<ul><li> |
|
K. Childers, 2015: |
|
|
<a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf"> |
|
|
Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a> |
|
|
Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY. |
|
|
</li></ul> |
|
|
|
|
|
<ul><li> |
|
| 26 |
P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson, |
P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson, |
| 27 |
2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The |
2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The |
| 28 |
importance of vertical resolution in sea ice algae production models.</a> |
importance of vertical resolution in sea ice algae production models.</a> |
| 62 |
<a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf"> |
<a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf"> |
| 63 |
ECCO version 4: an integrated framework for non-linear inverse |
ECCO version 4: an integrated framework for non-linear inverse |
| 64 |
modeling and global ocean state estimation.</a> Geosci. Model Dev., 8, |
modeling and global ocean state estimation.</a> Geosci. Model Dev., 8, |
| 65 |
3071-3104. doi:10.5194/gmd-8-3071-2015. |
3071-3104. |
| 66 |
</ul></li> |
</ul></li> |
| 67 |
|
|
| 68 |
<ul><li> |
<ul><li> |
| 73 |
</ul></li> |
</ul></li> |
| 74 |
|
|
| 75 |
<ul><li> |
<ul><li> |
| 76 |
McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean |
I. Fukumori, 2015: Combining models and data in large-scale oceanography: |
| 77 |
Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling |
Examples from the Consortium for Estimating the Circulation and Climate of the |
| 78 |
Floats. JPO, 45, 1773-1793. |
Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the |
| 79 |
</ul></li> |
Les Houches School of Physics: Special Issue, June 2012. |
|
|
|
|
<ul><li> |
|
|
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015: |
|
|
<a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html"> |
|
|
Modeling the impact of riverine DON removal by marine bacterioplankton on |
|
|
primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402. |
|
| 80 |
</li></ul> |
</li></ul> |
| 81 |
|
|
| 82 |
<ul><li> |
<ul><li> |
| 83 |
I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform |
I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform |
| 84 |
fluctuation of ocean bottom pressure and sea level across the deep ocean |
fluctuation of ocean bottom pressure and sea level across the deep ocean |
| 85 |
basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, |
basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172. |
| 86 |
152-172. |
</li></ul> |
|
</ul></li> |
|
| 87 |
|
|
| 88 |
<ul><li> |
<ul><li> |
| 89 |
D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, |
D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, |
| 108 |
</li></ul> |
</li></ul> |
| 109 |
|
|
| 110 |
<ul><li> |
<ul><li> |
| 111 |
|
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015: |
| 112 |
|
<a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html"> |
| 113 |
|
Modeling the impact of riverine DON removal by marine bacterioplankton on |
| 114 |
|
primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402. |
| 115 |
|
</li></ul> |
| 116 |
|
|
| 117 |
|
<ul><li> |
| 118 |
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015: |
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015: |
| 119 |
Vertical redistribution of oceanic heat. 28, 3821-3833. |
Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833. |
| 120 |
doi:10.1175/JCLI-D-14-00550.1. |
</ul></li> |
| 121 |
|
|
| 122 |
|
<ul><li> |
| 123 |
|
K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean |
| 124 |
|
Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling |
| 125 |
|
Floats. J. Phys. Oceanogr., 45, 1773-1793. |
| 126 |
</ul></li> |
</ul></li> |
| 127 |
|
|
| 128 |
<ul><li> |
<ul><li> |
| 135 |
</li></ul> |
</li></ul> |
| 136 |
|
|
| 137 |
<ul><li> |
<ul><li> |
| 138 |
|
C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic |
| 139 |
|
Rossby waves in the northeast tropical Pacific Ocean. J. Geophys. |
| 140 |
|
Res., 120, 2449-2459. |
| 141 |
|
</li></ul> |
| 142 |
|
|
| 143 |
|
<ul><li> |
| 144 |
C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical |
C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical |
| 145 |
structure of ocean pressure fluctuations with application to |
structure of ocean pressure fluctuations with application to |
| 146 |
satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613. |
satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613. |
| 149 |
<ul><li> |
<ul><li> |
| 150 |
C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity |
C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity |
| 151 |
of contemporary sea level trends in a global ocean state estimate to effects |
of contemporary sea level trends in a global ocean state estimate to effects |
| 152 |
of geothermal fluxes, Ocean Model., 96, 214-220. doi:10.1016/j.ocemod.2015.10.008. |
of geothermal fluxes, Ocean Model., 96, 214-220. |
|
</li></ul> |
|
|
|
|
|
<ul><li> |
|
|
K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521. |
|
| 153 |
</li></ul> |
</li></ul> |
| 154 |
|
|
| 155 |
<ul><li> |
<ul><li> |
| 156 |
T. Van der Stocken, 2015: |
K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction |
| 157 |
<a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and |
and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521. |
|
environmental drivers of mangrove propagule dispersal: A field and modeling |
|
|
approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles. |
|
| 158 |
</li></ul> |
</li></ul> |
| 159 |
|
|
| 160 |
<ul><li> |
<ul><li> |
| 176 |
</li></ul> |
</li></ul> |
| 177 |
|
|
| 178 |
<ul><li> |
<ul><li> |
| 179 |
|
T. Van der Stocken, 2015: |
| 180 |
|
<a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and |
| 181 |
|
environmental drivers of mangrove propagule dispersal: A field and modeling |
| 182 |
|
approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite |
| 183 |
|
Libre de Bruxelles. |
| 184 |
|
</li></ul> |
| 185 |
|
|
| 186 |
|
<ul><li> |
| 187 |
|
E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics |
| 188 |
|
of Agulhas rings affect interocean plankton transport, Science, Vol. 348, |
| 189 |
|
6237. |
| 190 |
|
</li></ul> |
| 191 |
|
|
| 192 |
|
<ul><li> |
| 193 |
N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis, |
N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis, |
| 194 |
2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and |
2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and |
| 195 |
Loading Effects. J. Phys. Oceanogr., 45, 678-689. |
Loading Effects. J. Phys. Oceanogr., 45, 678-689. |
| 199 |
X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015: |
X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015: |
| 200 |
<a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf"> |
<a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf"> |
| 201 |
Regional ocean forecasting systems and their applications: Design |
Regional ocean forecasting systems and their applications: Design |
| 202 |
consideration of such a system for the South China Sea.</a> Aquatic |
consideration of such a system for the South China Sea.</a> |
| 203 |
Ecosystem Health & Management, 18, 443-453. |
Aquat. Ecosyst. Health Manag., 18, 443-453. |
| 204 |
</li></ul> |
</li></ul> |
| 205 |
|
|
| 206 |
<ul><li> |
<ul><li> |
| 211 |
</li></ul> |
</li></ul> |
| 212 |
|
|
| 213 |
<ul><li> |
<ul><li> |
| 214 |
|
C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the |
| 215 |
|
Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32, |
| 216 |
|
1460-1472. |
| 217 |
|
</li></ul> |
| 218 |
|
|
| 219 |
|
<ul><li> |
| 220 |
V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy |
V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy |
| 221 |
and the general circulation: Partitioning wind, buoyancy forcing, and |
and the general circulation: Partitioning wind, buoyancy forcing, and |
| 222 |
irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531. |
irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531. |
| 223 |
</li></ul> |
</li></ul> |
| 224 |
|
|
| 225 |
|
<ul><li> |
| 226 |
|
Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015: |
| 227 |
|
Biogeochemical drivers of the fate of riverine mercury discharged to the |
| 228 |
|
global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864. |
| 229 |
|
</li></ul> |