/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by heimbach, Wed Jun 3 09:50:48 2015 UTC revision 1.28 by dimitri, Sat Jul 9 04:57:32 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  the origins of advective heat transport variability in the North Atlantic. J.
16  origins of advective heat transport variability in the North Atlantic. J.  Clim., 18, 3943-3956.
 Clim., 18(10), 3943-3956, doi:10.1175/JCLI-D-14-00579.1.  
 </li></ul>  
   
 <ul><li>  
 Chen, R., Flierl, G. R., & Wunsch, C., 2015: Quantifying and Interpreting Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., 45(2), 387–406. doi:10.1175/JPO-D-14-0038.1.  
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  K. Childers, 2015:  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>  45, 387-406.
 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.  
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 37  J. Mar. Syst., 145, 69-90. Line 30  J. Mar. Syst., 145, 69-90.
30  </li></ul>  </li></ul>
31    
32  <ul><li>  <ul><li>
33    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36    doi:10.1007/s00382-015-2796-6
37    </li></ul>
38    
39    <ul><li>
40  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
43  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48  variability.  Prog. Oceanogr., n revision.  turbulent transport rates by argo: supporting evidence from an
49    inversion experiment. Ocean Science, 11, 839-853.
50    </li></ul>
51    
52    <ul><li>
53    G. Forget and R.M. Ponte, 2015:
54    <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55    The partition of regional sea level variability.</a> Prog. Oceanogr.,
56    137, 173-195.
57  </ul></li>  </ul></li>
58    
59  <ul><li>  <ul><li>
60  Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 3653-3743, doi:10.5194/gmdd-8-3653-2015.  G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61    C. Wunsch, 2015:
62    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63    ECCO version 4: an integrated framework for non-linear inverse
64    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65    3071-3104.
66  </ul></li>  </ul></li>
67    
68  <ul><li>  <ul><li>
69  Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G., 2015:  The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70  A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas.  <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71  Prog. Oceanogr., 134(C), 152–172. doi:10.1016/j.pocean.2015.01.013.  Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76    I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77    Examples from the Consortium for Estimating the Circulation and Climate of the
78    Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79    Les Houches School of Physics: Special Issue, June 2012.
80    </li></ul>
81    
82    <ul><li>
83    I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84    fluctuation of ocean bottom pressure and sea level across the deep ocean
85    basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86    </li></ul>
87    
88    <ul><li>
89  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91  Quantifying the processes controlling intraseasonal mixed-layer temperature  Quantifying the processes controlling intraseasonal mixed-layer temperature
# Line 74  Tech., 32, 131-143. Line 101  Tech., 32, 131-143.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104  Heimbach, P., 2015: Application of derivative code in climate modeling.  P. Heimbach, 2015: Application of derivative code in climate modeling.
105  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106  Adjoint Methods in Computational Science, Engineering, and Finance.  Adjoint Methods in Computational Science, Engineering, and Finance.
107  Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1  Dagstuhl Reports, 4, 14-16.
108    </li></ul>
109    
110    <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. 28(9), 3821-3833,  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120  doi:10.1175/JCLI-D-14-00550.1.  </ul></li>
121    
122    <ul><li>
123    K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125    Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  </ul></li>  </ul></li>
127    
128  <ul><li>  <ul><li>
# Line 96  from NASA's Carbon Monitoring Flux Pilot Line 135  from NASA's Carbon Monitoring Flux Pilot
135  </li></ul>  </li></ul>
136    
137  <ul><li>  <ul><li>
138    C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic
139    Rossby waves in the northeast tropical Pacific Ocean. J. Geophys.
140    Res., 120, 2449-2459.
141    </li></ul>
142    
143    <ul><li>
144  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
146  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
147    </li></ul>
148    
149    <ul><li>
150    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151    of contemporary sea level trends in a global ocean state estimate to effects
152    of geothermal fluxes, Ocean Model., 96, 214-220.
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
156  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
157  deformation in a coupled ocean-sea ice model and in satellite remote  and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
 sensing data. J. Geophys. Res., submitted.  
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  Storto, A., and 36 others, 2015: Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2554-9  A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
162    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
163    doi:10.1007/s00382-015-2554-9
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  Toyoda, T., and 32 others, 2015:  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
168  Intercomparison and validation of the mixed layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2637-7.  mixed layer depths in the north pacific detected by an ensemble of ocean
169    syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
170  </li></ul>  </li></ul>
171    
172  <ul><li>  <ul><li>
173  Vinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., and Davis, J. L., 2015:  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
174  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects.  mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
175  J. Phys. Oceanogr., 45(3), 678–689, doi:10.1175/JPO-D-14-0150.1  doi:10.1007/s00382-015-2637-7
176    </li></ul>
177    
178    <ul><li>
179    T. Van der Stocken, 2015:
180    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
181    environmental drivers of mangrove propagule dispersal: A field and modeling
182    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite
183    Libre de Bruxelles.
184    </li></ul>
185    
186    <ul><li>
187    E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics
188    of Agulhas rings affect interocean plankton transport, Science, Vol. 348,
189    6237.
190    </li></ul>
191    
192    <ul><li>
193    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
194    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
195    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
196    </li></ul>
197    
198    <ul><li>
199    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
200    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
201    Regional ocean forecasting systems and their applications: Design
202    consideration of such a system for the South China Sea.</a>
203    Aquat. Ecosyst. Health Manag., 18, 443-453.
204  </li></ul>  </li></ul>
205    
206  <ul><li>  <ul><li>
207  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
208  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
209  river discharge and river temperature climatology data set for the  river discharge and river temperature climatology data set for the
210  pan-Arctic region.</a> Ocean Modelling, 88, 1-15.  pan-Arctic region.</a> Ocean Model., 88, 1-15.
211  </li></ul>  </li></ul>
212    
213  <ul><li>  <ul><li>
214  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
215  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
216  vertical mixing using seasonally averaged observations from the  1460-1472.
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
217  </li></ul>  </li></ul>
218    
219  <ul><li>  <ul><li>
220  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
221  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
222  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
223    </li></ul>
224    
225    <ul><li>
226    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
227    Biogeochemical drivers of the fate of riverine mercury discharged to the
228    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
229  </li></ul>  </li></ul>

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22