/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by dimitri, Tue Feb 3 16:51:38 2015 UTC revision 1.27 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12  submitted.  </li></ul>
13    
14    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15    the origins of advective heat transport variability in the North Atlantic. J.
16    Clim., 18, 3943-3956.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Clim., in revision.  45, 387-406.
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 26  J. Mar. Syst., 145, 69-90. Line 30  J. Mar. Syst., 145, 69-90.
30  </li></ul>  </li></ul>
31    
32  <ul><li>  <ul><li>
33    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36    doi:10.1007/s00382-015-2796-6
37    </li></ul>
38    
39    <ul><li>
40  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
43  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44    </li></ul>
45    
46    <ul><li>
47    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48    turbulent transport rates by argo: supporting evidence from an
49    inversion experiment. Ocean Science, 11, 839-853.
50  </li></ul>  </li></ul>
51    
52  <ul><li>  <ul><li>
53  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
54  variability.  Prog. Oceanogr., submitted.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55    The partition of regional sea level variability.</a> Prog. Oceanogr.,
56    137, 173-195.
57    </ul></li>
58    
59    <ul><li>
60    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61    C. Wunsch, 2015:
62    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63    ECCO version 4: an integrated framework for non-linear inverse
64    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65    3071-3104.
66    </ul></li>
67    
68    <ul><li>
69    The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77  Quantifying the processes controlling intraseasonal mixed-layer  Examples from the Consortium for Estimating the Circulation and Climate of the
78  temperature variability in the tropical Indian  Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79  Ocean. J. Geophys. Res., in press.  Les Houches School of Physics: Special Issue, June 2012.
80    </li></ul>
81    
82    <ul><li>
83    I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84    fluctuation of ocean bottom pressure and sea level across the deep ocean
85    basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86    </li></ul>
87    
88    <ul><li>
89    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90    2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91    Quantifying the processes controlling intraseasonal mixed-layer temperature
92    variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
93  </li></ul>  </li></ul>
94    
95  <ul><li>  <ul><li>
# Line 53  Tech., 32, 131-143. Line 101  Tech., 32, 131-143.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
105  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
107  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
108    </li></ul>
109    
110    <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120  </ul></li>  </ul></li>
121    
122  <ul><li>  <ul><li>
123  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125  2015: Quantifying the observability of CO2 flux uncertainty in  Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  atmospheric CO2 records using products from NASA's Carbon Monitoring  </ul></li>
127  Flux Pilot Project. J. Geophys. Res., in press.  
128    <ul><li>
129    L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
130    K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
131    2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
132    magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
133    from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
134    734-765.
135  </li></ul>  </li></ul>
136    
137  <ul><li>  <ul><li>
138  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
139  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
140  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
141    </li></ul>
142    
143    <ul><li>
144    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
145    of contemporary sea level trends in a global ocean state estimate to effects
146    of geothermal fluxes, Ocean Model., 96, 214-220.
147    </li></ul>
148    
149    <ul><li>
150    K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
151    and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
152    </li></ul>
153    
154    <ul><li>
155    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
156    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
157    doi:10.1007/s00382-015-2554-9
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
162  deformation in a coupled ocean-sea ice model and in satellite remote  mixed layer depths in the north pacific detected by an ensemble of ocean
163  sensing data. J. Geophys. Res., submitted.  syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
168  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
169  self-attraction and loading effects, J. Phys. Oceanogr., in press.  doi:10.1007/s00382-015-2637-7
170  </li></ul>  </li></ul>
171    
172  <ul><li>  <ul><li>
173  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river  T. Van der Stocken, 2015:
174  discharge and river temperature data set for the pan-Arctic region. Ocean  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
175  Modelling, in press.  environmental drivers of mangrove propagule dispersal: A field and modeling
176    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
177  </li></ul>  </li></ul>
178    
179  <ul><li>  <ul><li>
180  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
181  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
182  vertical mixing using seasonally averaged observations from the  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
183  TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  </li></ul>
184    
185    <ul><li>
186    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
187    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
188    Regional ocean forecasting systems and their applications: Design
189    consideration of such a system for the South China Sea.</a>
190    Aquat. Ecosyst. Health Manag., 18, 443-453.
191    </li></ul>
192    
193    <ul><li>
194    J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
195    2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
196    river discharge and river temperature climatology data set for the
197    pan-Arctic region.</a> Ocean Model., 88, 1-15.
198    </li></ul>
199    
200    <ul><li>
201    C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
202    Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
203    1460-1472.
204  </li></ul>  </li></ul>
205    
206  <ul><li>  <ul><li>
207  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
208  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
209  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
210    </li></ul>
211    
212    <ul><li>
213    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
214    Biogeochemical drivers of the fate of riverine mercury discharged to the
215    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
216  </li></ul>  </li></ul>

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22