/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.11 by dimitri, Sun Mar 15 22:19:08 2015 UTC revision 1.27 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  the origins of advective heat transport variability in the North Atlantic. J.
16  origins of advective heat transport variability in the North Atlantic. J.  Clim., 18, 3943-3956.
 Clim., in revision.  
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  K. Childers, 2015:  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>  45, 387-406.
 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.  
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 30  J. Mar. Syst., 145, 69-90.
30  </li></ul>  </li></ul>
31    
32  <ul><li>  <ul><li>
33    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36    doi:10.1007/s00382-015-2796-6
37    </li></ul>
38    
39    <ul><li>
40  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
43  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44    </li></ul>
45    
46    <ul><li>
47    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48    turbulent transport rates by argo: supporting evidence from an
49    inversion experiment. Ocean Science, 11, 839-853.
50  </li></ul>  </li></ul>
51    
52  <ul><li>  <ul><li>
53  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
54  variability.  Prog. Oceanogr., submitted.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55    The partition of regional sea level variability.</a> Prog. Oceanogr.,
56    137, 173-195.
57    </ul></li>
58    
59    <ul><li>
60    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61    C. Wunsch, 2015:
62    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63    ECCO version 4: an integrated framework for non-linear inverse
64    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65    3071-3104.
66  </ul></li>  </ul></li>
67    
68  <ul><li>  <ul><li>
69    The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73    </ul></li>
74    
75    <ul><li>
76    I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77    Examples from the Consortium for Estimating the Circulation and Climate of the
78    Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79    Les Houches School of Physics: Special Issue, June 2012.
80    </li></ul>
81    
82    <ul><li>
83    I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84    fluctuation of ocean bottom pressure and sea level across the deep ocean
85    basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86    </li></ul>
87    
88    <ul><li>
89  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91  Quantifying the processes controlling intraseasonal mixed-layer temperature  Quantifying the processes controlling intraseasonal mixed-layer temperature
92  variability in the tropical Indian Ocean.</a> J. Geophys. Res., doi:  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
 10.1002/2014JC010139.  
93  </li></ul>  </li></ul>
94    
95  <ul><li>  <ul><li>
# Line 61  Tech., 32, 131-143. Line 101  Tech., 32, 131-143.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
105  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
107  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
108    </li></ul>
109    
110    <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120    </ul></li>
121    
122    <ul><li>
123    K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125    Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  </ul></li>  </ul></li>
127    
128  <ul><li>  <ul><li>
# Line 84  from NASA's Carbon Monitoring Flux Pilot Line 137  from NASA's Carbon Monitoring Flux Pilot
137  <ul><li>  <ul><li>
138  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
139  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
140  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
141    </li></ul>
142    
143    <ul><li>
144    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
145    of contemporary sea level trends in a global ocean state estimate to effects
146    of geothermal fluxes, Ocean Model., 96, 214-220.
147    </li></ul>
148    
149    <ul><li>
150    K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
151    and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
152    </li></ul>
153    
154    <ul><li>
155    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
156    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
157    doi:10.1007/s00382-015-2554-9
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
162  deformation in a coupled ocean-sea ice model and in satellite remote  mixed layer depths in the north pacific detected by an ensemble of ocean
163  sensing data. J. Geophys. Res., submitted.  syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
168  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
169  self-attraction and loading effects, J. Phys. Oceanogr., in press.  doi:10.1007/s00382-015-2637-7
170    </li></ul>
171    
172    <ul><li>
173    T. Van der Stocken, 2015:
174    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
175    environmental drivers of mangrove propagule dispersal: A field and modeling
176    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
177    </li></ul>
178    
179    <ul><li>
180    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
181    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
182    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
183    </li></ul>
184    
185    <ul><li>
186    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
187    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
188    Regional ocean forecasting systems and their applications: Design
189    consideration of such a system for the South China Sea.</a>
190    Aquat. Ecosyst. Health Manag., 18, 443-453.
191  </li></ul>  </li></ul>
192    
193  <ul><li>  <ul><li>
194  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
195  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
196  river discharge and river temperature climatology data set for the  river discharge and river temperature climatology data set for the
197  pan-Arctic region.</a> Ocean Modelling, 88, 1-15.  pan-Arctic region.</a> Ocean Model., 88, 1-15.
198  </li></ul>  </li></ul>
199    
200  <ul><li>  <ul><li>
201  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
202  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
203  vertical mixing using seasonally averaged observations from the  1460-1472.
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
204  </li></ul>  </li></ul>
205    
206  <ul><li>  <ul><li>
207  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
208  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
209  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
210    </li></ul>
211    
212    <ul><li>
213    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
214    Biogeochemical drivers of the fate of riverine mercury discharged to the
215    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
216  </li></ul>  </li></ul>

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22