/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.26 by heimbach, Mon May 2 18:54:30 2016 UTC revision 1.28 by dimitri, Sat Jul 9 04:57:32 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 13  biogeochemistry general circulation mode Line 13  biogeochemistry general circulation mode
13    
14  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15  the origins of advective heat transport variability in the North Atlantic. J.  the origins of advective heat transport variability in the North Atlantic. J.
16  Clim., 18, 3943-3956. doi:10.1175/JCLI-D-14-00579.1.  Clim., 18, 3943-3956.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
# Line 23  Striations in a Subtropical Gyre: A Spec Line 23  Striations in a Subtropical Gyre: A Spec
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
 K. Childers, 2015:  
 <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">  
 Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>  
 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.  
 </li></ul>  
   
 <ul><li>  
26  P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,  P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
27  2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The  2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
28  importance of vertical resolution in sea ice algae production models.</a>  importance of vertical resolution in sea ice algae production models.</a>
# Line 69  C. Wunsch, 2015: Line 62  C. Wunsch, 2015:
62  <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">  <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63  ECCO version 4: an integrated framework for non-linear inverse  ECCO version 4: an integrated framework for non-linear inverse
64  modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,  modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65  3071-3104. doi:10.5194/gmd-8-3071-2015.  3071-3104.
66  </ul></li>  </ul></li>
67    
68  <ul><li>  <ul><li>
# Line 80  CLIVAR Science.</a> CLIVAR Exchanges, 67 Line 73  CLIVAR Science.</a> CLIVAR Exchanges, 67
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76  McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean  I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77  Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling  Examples from the Consortium for Estimating the Circulation and Climate of the
78  Floats. JPO, 45, 1773-1793.  Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79  </ul></li>  Les Houches School of Physics: Special Issue, June 2012.
   
 <ul><li>  
 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:  
 <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">  
 Modeling the impact of riverine DON removal by marine bacterioplankton on  
 primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.  
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83  I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform  I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84  fluctuation of ocean bottom pressure and sea level across the deep ocean  fluctuation of ocean bottom pressure and sea level across the deep ocean
85  basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,  basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86  152-172.  </li></ul>
 </ul></li>  
87    
88  <ul><li>  <ul><li>
89  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
# Line 122  Dagstuhl Reports, 4, 14-16. Line 108  Dagstuhl Reports, 4, 14-16.
108  </li></ul>  </li></ul>
109    
110  <ul><li>  <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115    </li></ul>
116    
117    <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. 28, 3821-3833.  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120  doi:10.1175/JCLI-D-14-00550.1.  </ul></li>
121    
122    <ul><li>
123    K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125    Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  </ul></li>  </ul></li>
127    
128  <ul><li>  <ul><li>
# Line 137  from NASA's Carbon Monitoring Flux Pilot Line 135  from NASA's Carbon Monitoring Flux Pilot
135  </li></ul>  </li></ul>
136    
137  <ul><li>  <ul><li>
138    C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic
139    Rossby waves in the northeast tropical Pacific Ocean. J. Geophys.
140    Res., 120, 2449-2459.
141    </li></ul>
142    
143    <ul><li>
144  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
146  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
# Line 145  satellite-gravimetric observations. J. A Line 149  satellite-gravimetric observations. J. A
149  <ul><li>  <ul><li>
150  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151  of contemporary sea level trends in a global ocean state estimate to effects  of contemporary sea level trends in a global ocean state estimate to effects
152  of geothermal fluxes, Ocean Model., 96, 214-220. doi:10.1016/j.ocemod.2015.10.008.  of geothermal fluxes, Ocean Model., 96, 214-220.
 </li></ul>  
   
 <ul><li>  
 K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.  
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
156  T. Van der Stocken, 2015:  K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
157  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and  and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
 environmental drivers of mangrove propagule dispersal: A field and modeling  
 approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.  
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
# Line 178  doi:10.1007/s00382-015-2637-7 Line 176  doi:10.1007/s00382-015-2637-7
176  </li></ul>  </li></ul>
177    
178  <ul><li>  <ul><li>
179    T. Van der Stocken, 2015:
180    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
181    environmental drivers of mangrove propagule dispersal: A field and modeling
182    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite
183    Libre de Bruxelles.
184    </li></ul>
185    
186    <ul><li>
187    E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics
188    of Agulhas rings affect interocean plankton transport, Science, Vol. 348,
189    6237.
190    </li></ul>
191    
192    <ul><li>
193  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
194  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
195  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
# Line 187  Loading Effects.  J. Phys. Oceanogr., 45 Line 199  Loading Effects.  J. Phys. Oceanogr., 45
199  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
200  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
201  Regional ocean forecasting systems and their applications: Design  Regional ocean forecasting systems and their applications: Design
202  consideration of such a system for the South China Sea.</a> Aquatic  consideration of such a system for the South China Sea.</a>
203  Ecosystem Health & Management, 18, 443-453.  Aquat. Ecosyst. Health Manag., 18, 443-453.
204  </li></ul>  </li></ul>
205    
206  <ul><li>  <ul><li>
# Line 199  pan-Arctic region.</a> Ocean Model., 88, Line 211  pan-Arctic region.</a> Ocean Model., 88,
211  </li></ul>  </li></ul>
212    
213  <ul><li>  <ul><li>
214    C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
215    Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
216    1460-1472.
217    </li></ul>
218    
219    <ul><li>
220  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
221  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
222  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
223  </li></ul>  </li></ul>
224    
225    <ul><li>
226    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
227    Biogeochemical drivers of the fate of riverine mercury discharged to the
228    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
229    </li></ul>

Legend:
Removed from v.1.26  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22