/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.26 by heimbach, Mon May 2 18:54:30 2016 UTC revision 1.27 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 13  biogeochemistry general circulation mode Line 13  biogeochemistry general circulation mode
13    
14  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15  the origins of advective heat transport variability in the North Atlantic. J.  the origins of advective heat transport variability in the North Atlantic. J.
16  Clim., 18, 3943-3956. doi:10.1175/JCLI-D-14-00579.1.  Clim., 18, 3943-3956.
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
# Line 23  Striations in a Subtropical Gyre: A Spec Line 23  Striations in a Subtropical Gyre: A Spec
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
 K. Childers, 2015:  
 <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">  
 Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>  
 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.  
 </li></ul>  
   
 <ul><li>  
26  P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,  P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
27  2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The  2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
28  importance of vertical resolution in sea ice algae production models.</a>  importance of vertical resolution in sea ice algae production models.</a>
# Line 69  C. Wunsch, 2015: Line 62  C. Wunsch, 2015:
62  <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">  <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63  ECCO version 4: an integrated framework for non-linear inverse  ECCO version 4: an integrated framework for non-linear inverse
64  modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,  modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65  3071-3104. doi:10.5194/gmd-8-3071-2015.  3071-3104.
66  </ul></li>  </ul></li>
67    
68  <ul><li>  <ul><li>
# Line 80  CLIVAR Science.</a> CLIVAR Exchanges, 67 Line 73  CLIVAR Science.</a> CLIVAR Exchanges, 67
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76  McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean  I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77  Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling  Examples from the Consortium for Estimating the Circulation and Climate of the
78  Floats. JPO, 45, 1773-1793.  Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79  </ul></li>  Les Houches School of Physics: Special Issue, June 2012.
   
 <ul><li>  
 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:  
 <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">  
 Modeling the impact of riverine DON removal by marine bacterioplankton on  
 primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.  
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83  I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform  I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84  fluctuation of ocean bottom pressure and sea level across the deep ocean  fluctuation of ocean bottom pressure and sea level across the deep ocean
85  basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,  basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86  152-172.  </li></ul>
 </ul></li>  
87    
88  <ul><li>  <ul><li>
89  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
# Line 122  Dagstuhl Reports, 4, 14-16. Line 108  Dagstuhl Reports, 4, 14-16.
108  </li></ul>  </li></ul>
109    
110  <ul><li>  <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115    </li></ul>
116    
117    <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. 28, 3821-3833.  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120  doi:10.1175/JCLI-D-14-00550.1.  </ul></li>
121    
122    <ul><li>
123    K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125    Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  </ul></li>  </ul></li>
127    
128  <ul><li>  <ul><li>
# Line 145  satellite-gravimetric observations. J. A Line 143  satellite-gravimetric observations. J. A
143  <ul><li>  <ul><li>
144  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity  C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
145  of contemporary sea level trends in a global ocean state estimate to effects  of contemporary sea level trends in a global ocean state estimate to effects
146  of geothermal fluxes, Ocean Model., 96, 214-220. doi:10.1016/j.ocemod.2015.10.008.  of geothermal fluxes, Ocean Model., 96, 214-220.
147  </li></ul>  </li></ul>
148    
149  <ul><li>  <ul><li>
150  K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.  K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
151  </li></ul>  and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
   
 <ul><li>  
 T. Van der Stocken, 2015:  
 <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and  
 environmental drivers of mangrove propagule dispersal: A field and modeling  
 approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.  
152  </li></ul>  </li></ul>
153    
154  <ul><li>  <ul><li>
# Line 178  doi:10.1007/s00382-015-2637-7 Line 170  doi:10.1007/s00382-015-2637-7
170  </li></ul>  </li></ul>
171    
172  <ul><li>  <ul><li>
173    T. Van der Stocken, 2015:
174    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
175    environmental drivers of mangrove propagule dispersal: A field and modeling
176    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
177    </li></ul>
178    
179    <ul><li>
180  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
181  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
182  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
# Line 187  Loading Effects.  J. Phys. Oceanogr., 45 Line 186  Loading Effects.  J. Phys. Oceanogr., 45
186  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
187  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
188  Regional ocean forecasting systems and their applications: Design  Regional ocean forecasting systems and their applications: Design
189  consideration of such a system for the South China Sea.</a> Aquatic  consideration of such a system for the South China Sea.</a>
190  Ecosystem Health & Management, 18, 443-453.  Aquat. Ecosyst. Health Manag., 18, 443-453.
191  </li></ul>  </li></ul>
192    
193  <ul><li>  <ul><li>
# Line 199  pan-Arctic region.</a> Ocean Model., 88, Line 198  pan-Arctic region.</a> Ocean Model., 88,
198  </li></ul>  </li></ul>
199    
200  <ul><li>  <ul><li>
201    C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
202    Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
203    1460-1472.
204    </li></ul>
205    
206    <ul><li>
207  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
208  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
209  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
210  </li></ul>  </li></ul>
211    
212    <ul><li>
213    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
214    Biogeochemical drivers of the fate of riverine mercury discharged to the
215    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
216    </li></ul>

Legend:
Removed from v.1.26  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22