/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by dimitri, Mon Jan 12 19:48:15 2015 UTC revision 1.24 by dimitri, Wed Dec 2 16:38:00 2015 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7    M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
8    (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
9    </li></ul>
10    
11    <ul><li>
12  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
13  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
14  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
15  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
16  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Modelling, 95, 1-14.
17  submitted.  </li></ul>
18    
19    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
20    the origins of advective heat transport variability in the North Atlantic. J.
21    Clim., 18, 3943-3956.
22  </li></ul>  </li></ul>
23    
24  <ul><li>  <ul><li>
25  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
26  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
27  Clim., in revision.  45, 387-406.
28    </li></ul>
29    
30    <ul><li>
31    K. Childers, 2015:
32    <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
33    Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
34    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
35    </li></ul>
36    
37    <ul><li>
38    P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
39    2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
40    importance of vertical resolution in sea ice algae production models.</a>
41    J. Mar. Syst., 145, 69-90.
42    </li></ul>
43    
44    <ul><li>
45    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
46    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
47    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
48  </li></ul>  </li></ul>
49    
50  <ul><li>  <ul><li>
51  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
52  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
53  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
54  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
55    </li></ul>
56    
57    <ul><li>
58    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
59    turbulent transport rates by argo: supporting evidence from an
60    inversion experiment. Ocean Science, 11, 839-853.
61    </li></ul>
62    
63    <ul><li>
64    G. Forget and R.M. Ponte, 2015:
65    <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
66    The partition of regional sea level variability.</a> Prog. Oceanogr.,
67    137, 173-195.
68    </ul></li>
69    
70    <ul><li>
71    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
72    C. Wunsch, 2015:
73    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
74    ECCO version 4: an integrated framework for non-linear inverse
75    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
76    3071-3104.
77    </ul></li>
78    
79    <ul><li>
80    G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
81    R.M. Ponte, 2015:
82    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
83    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
84    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
85    </ul></li>
86    
87    <ul><li>
88    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
89    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
90    Floats. JPO, 45, 1773-1793.
91    </ul></li>
92    
93    <ul><li>
94    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
95    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
96    Modeling the impact of riverine DON removal by marine bacterioplankton on
97    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
98  </li></ul>  </li></ul>
99    
100  <ul><li>  <ul><li>
101  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
102  variability.  Prog. Oceanogr., submitted.  fluctuation of ocean bottom pressure and sea level across the deep ocean
103    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
104    152-172.
105  </ul></li>  </ul></li>
106    
107  <ul><li>  <ul><li>
108  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
109  Quantifying the processes controlling intraseasonal mixed-layer  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
110  temperature variability in the tropical Indian  Quantifying the processes controlling intraseasonal mixed-layer temperature
111  Ocean. J. Geophys. Res., in press.  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
112  </li></ul>  </li></ul>
113    
114  <ul><li>  <ul><li>
# Line 46  Tech., 32, 131-143. Line 120  Tech., 32, 131-143.
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
124  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
125  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
126  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
127  </li></ul>  </li></ul>
128    
129  <ul><li>  <ul><li>
130  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
131  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833.
132  </ul></li>  </ul></li>
133    
134  <ul><li>  <ul><li>
135  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
136  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
137  2015: Quantifying the observability of CO2 flux uncertainty in  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
138  atmospheric CO2 records using products from NASA's Carbon Monitoring  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
139  Flux Pilot Project. J. Geophys. Res., in press.  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
140    734-765.
141  </li></ul>  </li></ul>
142    
143  <ul><li>  <ul><li>
144  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145  structure  of ocean pressure fluctuations with application  structure  of ocean pressure fluctuations with application to
146  to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
147    </li></ul>
148    
149    <ul><li>
150    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151    of contemporary sea level trends in a global ocean state estimate to effects
152    of geothermal fluxes, Ocean Model., in press.
153  </li></ul>  </li></ul>
154    
155  <ul><li>  <ul><li>
# Line 78  sensing data. J. Geophys. Res., submitte Line 159  sensing data. J. Geophys. Res., submitte
159  </li></ul>  </li></ul>
160    
161  <ul><li>  <ul><li>
162  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
163  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
164  self-attraction and loading effects, J. Phys. Oceanogr., in revision.  environmental drivers of mangrove propagule dispersal: A field and modeling
165    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
166    </li></ul>
167    
168    <ul><li>
169    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
170    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
171    doi:10.1007/s00382-015-2554-9
172    </li></ul>
173    
174    <ul><li>
175    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
176    mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
177    Climate Dynamics, 1-17.
178    </li></ul>
179    
180    <ul><li>
181    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
182    layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
183    doi:10.1007/s00382-015-2637-7.
184    </li></ul>
185    
186    <ul><li>
187    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
188    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
189    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
190    </li></ul>
191    
192    <ul><li>
193    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
194    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
195    Regional ocean forecasting systems and their applications: Design
196    consideration of such a system for the South China Sea.</a> Aquatic
197    Ecosystem Health & Management, in press,
198    doi10.1080/14634988.2015.1112123.
199  </li></ul>  </li></ul>
200    
201  <ul><li>  <ul><li>
202  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
203  discharge and river temperature data set for the pan-Arctic region. Ocean  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
204  Modelling, in press.  river discharge and river temperature climatology data set for the
205    pan-Arctic region.</a> Ocean Modelling, 88, 1-15.
206  </li></ul>  </li></ul>
207    
208  <ul><li>  <ul><li>

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22