/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by heimbach, Mon Mar 30 15:55:50 2015 UTC revision 1.24 by dimitri, Wed Dec 2 16:38:00 2015 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7    M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
8    (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
9    </li></ul>
10    
11    <ul><li>
12  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
13  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
14  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
15  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
16  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Modelling, 95, 1-14.
17  submitted.  </li></ul>
18    
19    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
20    the origins of advective heat transport variability in the North Atlantic. J.
21    Clim., 18, 3943-3956.
22  </li></ul>  </li></ul>
23    
24  <ul><li>  <ul><li>
25  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
26  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
27  Clim., in press, doi:10.1175/JCLI-D-14-00579.1.  45, 387-406.
28  </li></ul>  </li></ul>
29    
30  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 42  J. Mar. Syst., 145, 69-90.
42  </li></ul>  </li></ul>
43    
44  <ul><li>  <ul><li>
45    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
46    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
47    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
48    </li></ul>
49    
50    <ul><li>
51  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
52  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
53  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
54  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
55    </li></ul>
56    
57    <ul><li>
58    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
59    turbulent transport rates by argo: supporting evidence from an
60    inversion experiment. Ocean Science, 11, 839-853.
61  </li></ul>  </li></ul>
62    
63  <ul><li>  <ul><li>
64  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
65  variability.  Prog. Oceanogr., submitted.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
66    The partition of regional sea level variability.</a> Prog. Oceanogr.,
67    137, 173-195.
68  </ul></li>  </ul></li>
69    
70  <ul><li>  <ul><li>
71  Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015:  G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
72  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation.  C. Wunsch, 2015:
73  Geoscientific Model Development, submitted.  <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
74    ECCO version 4: an integrated framework for non-linear inverse
75    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
76    3071-3104.
77    </ul></li>
78    
79    <ul><li>
80    G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
81    R.M. Ponte, 2015:
82    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
83    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
84    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
85    </ul></li>
86    
87    <ul><li>
88    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
89    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
90    Floats. JPO, 45, 1773-1793.
91    </ul></li>
92    
93    <ul><li>
94    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
95    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
96    Modeling the impact of riverine DON removal by marine bacterioplankton on
97    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
98    </li></ul>
99    
100    <ul><li>
101    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
102    fluctuation of ocean bottom pressure and sea level across the deep ocean
103    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
104    152-172.
105  </ul></li>  </ul></li>
106    
107  <ul><li>  <ul><li>
# Line 66  Tech., 32, 131-143. Line 120  Tech., 32, 131-143.
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  Heimbach, P., 2015: Application of derivative code in climate modeling.  P. Heimbach, 2015: Application of derivative code in climate modeling.
124  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
125  Adjoint Methods in Computational Science, Engineering, and Finance.  Adjoint Methods in Computational Science, Engineering, and Finance.
126  Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1  Dagstuhl Reports, 4, 14-16.
127  </li></ul>  </li></ul>
128    
129  <ul><li>  <ul><li>
130  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
131  Vertical redistribution of oceanic heat. in press,  Vertical redistribution of oceanic heat. 28, 3821-3833.
 in press, doi:10.1175/JCLI-D-14-00550.1.  
132  </ul></li>  </ul></li>
133    
134  <ul><li>  <ul><li>
# Line 94  satellite-gravimetric observations. J. A Line 147  satellite-gravimetric observations. J. A
147  </li></ul>  </li></ul>
148    
149  <ul><li>  <ul><li>
150    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151    of contemporary sea level trends in a global ocean state estimate to effects
152    of geothermal fluxes, Ocean Model., in press.
153    </li></ul>
154    
155    <ul><li>
156  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice
157  deformation in a coupled ocean-sea ice model and in satellite remote  deformation in a coupled ocean-sea ice model and in satellite remote
158  sensing data. J. Geophys. Res., submitted.  sensing data. J. Geophys. Res., submitted.
159  </li></ul>  </li></ul>
160    
161  <ul><li>  <ul><li>
162  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
163  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
164  self-attraction and loading effects, J. Phys. Oceanogr., in press.  environmental drivers of mangrove propagule dispersal: A field and modeling
165    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
166    </li></ul>
167    
168    <ul><li>
169    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
170    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
171    doi:10.1007/s00382-015-2554-9
172    </li></ul>
173    
174    <ul><li>
175    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
176    mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
177    Climate Dynamics, 1-17.
178    </li></ul>
179    
180    <ul><li>
181    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
182    layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
183    doi:10.1007/s00382-015-2637-7.
184    </li></ul>
185    
186    <ul><li>
187    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
188    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
189    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
190    </li></ul>
191    
192    <ul><li>
193    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
194    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
195    Regional ocean forecasting systems and their applications: Design
196    consideration of such a system for the South China Sea.</a> Aquatic
197    Ecosystem Health & Management, in press,
198    doi10.1080/14634988.2015.1112123.
199  </li></ul>  </li></ul>
200    
201  <ul><li>  <ul><li>

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22