/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by heimbach, Wed Jun 3 09:50:48 2015 UTC revision 1.23 by dimitri, Wed Nov 11 00:08:35 2015 UTC
# Line 1  Line 1 
1    
2    <ul><li>
3    Forget, G., D. Ferreira, and X. Liang, 2015: On the observability of
4    turbulent transport rates by argo: supporting evidence from an
5    inversion experiment. Ocean Science, 11, 839-853, doi:10.5194/os-11-839-2015.
6    </li></ul>
7    
8    <ul><li>
9    Piecuch, C. G., P. Heimbach, R. M. Ponte, and G. Forget, 2015: Sensitivity
10    of contemporary sea level trends in a global ocean state estimate to effects
11    of geothermal fluxes, Ocean Model., in press.
12    </li></ul>
13    
14  <ul><li>  <ul><li>
15  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy
16  mixing in a circumpolar channel. Ocean Modelling, submitted.  mixing in a circumpolar channel. Ocean Modelling, submitted.
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 21  H. Brix, D. Menemenlis, C. Hill, S. Dutk
21  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
22  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
23  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
24  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Modelling, 95, 1-14.
 submitted.  
25  </li></ul>  </li></ul>
26    
27  <ul><li>  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
28  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  the origins of advective heat transport variability in the North Atlantic. J.
29  origins of advective heat transport variability in the North Atlantic. J.  Clim., 18, 3943-3956.
 Clim., 18(10), 3943-3956, doi:10.1175/JCLI-D-14-00579.1.  
30  </li></ul>  </li></ul>
31    
32  <ul><li>  <ul><li>
33  Chen, R., Flierl, G. R., & Wunsch, C., 2015: Quantifying and Interpreting Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., 45(2), 387–406. doi:10.1175/JPO-D-14-0038.1.  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
34    Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
35    45, 387-406.
36  </li></ul>  </li></ul>
37    
38  <ul><li>  <ul><li>
# Line 37  J. Mar. Syst., 145, 69-90. Line 50  J. Mar. Syst., 145, 69-90.
50  </li></ul>  </li></ul>
51    
52  <ul><li>  <ul><li>
53    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
54    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
55    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
56    </li></ul>
57    
58    <ul><li>
59  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
60  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
61  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
62  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
63  </li></ul>  </li></ul>
64    
65  <ul><li>  <ul><li>
66  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
67  variability.  Prog. Oceanogr., n revision.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
68    The partition of regional sea level variability.</a> Prog. Oceanogr.,
69    137, 173-195.
70    </ul></li>
71    
72    <ul><li>
73    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
74    C. Wunsch, 2015:
75    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
76    ECCO version 4: an integrated framework for non-linear inverse
77    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
78    3071-3104.
79    </ul></li>
80    
81    <ul><li>
82    G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
83    R.M. Ponte, 2015:
84    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
85    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
86    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
87  </ul></li>  </ul></li>
88    
89  <ul><li>  <ul><li>
90  Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 3653-3743, doi:10.5194/gmdd-8-3653-2015.  McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
91    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
92    Floats. JPO, 45, 1773-1793.
93  </ul></li>  </ul></li>
94    
95  <ul><li>  <ul><li>
96  Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G., 2015:  V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
97  A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas.  <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
98  Prog. Oceanogr., 134(C), 152–172. doi:10.1016/j.pocean.2015.01.013.  Modeling the impact of riverine DON removal by marine bacterioplankton on
99    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
100    </li></ul>
101    
102    <ul><li>
103    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
104    fluctuation of ocean bottom pressure and sea level across the deep ocean
105    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
106    152-172.
107  </ul></li>  </ul></li>
108    
109  <ul><li>  <ul><li>
# Line 74  Tech., 32, 131-143. Line 122  Tech., 32, 131-143.
122  </li></ul>  </li></ul>
123    
124  <ul><li>  <ul><li>
125  Heimbach, P., 2015: Application of derivative code in climate modeling.  P. Heimbach, 2015: Application of derivative code in climate modeling.
126  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
127  Adjoint Methods in Computational Science, Engineering, and Finance.  Adjoint Methods in Computational Science, Engineering, and Finance.
128  Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1  Dagstuhl Reports, 4, 14-16.
129  </li></ul>  </li></ul>
130    
131  <ul><li>  <ul><li>
132  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
133  Vertical redistribution of oceanic heat. 28(9), 3821-3833,  Vertical redistribution of oceanic heat. 28, 3821-3833.
 doi:10.1175/JCLI-D-14-00550.1.  
134  </ul></li>  </ul></li>
135    
136  <ul><li>  <ul><li>
# Line 108  sensing data. J. Geophys. Res., submitte Line 155  sensing data. J. Geophys. Res., submitte
155  </li></ul>  </li></ul>
156    
157  <ul><li>  <ul><li>
158  Storto, A., and 36 others, 2015: Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2554-9  T. Van der Stocken, 2015:
159    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
160    environmental drivers of mangrove propagule dispersal: A field and modeling
161    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Université
162    Libre de Bruxelles.
163    </li></ul>
164    
165    <ul><li>
166    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
167    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
168    doi:10.1007/s00382-015-2554-9
169  </li></ul>  </li></ul>
170    
171  <ul><li>  <ul><li>
172  Toyoda, T., and 32 others, 2015:  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
173  Intercomparison and validation of the mixed layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2637-7.  mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
174    Climate Dynamics, 1-17, doi:10.1007/s00382-015-2762-3.
175  </li></ul>  </li></ul>
176    
177  <ul><li>  <ul><li>
178  Vinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., and Davis, J. L., 2015:  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
179  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects.  layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
180  J. Phys. Oceanogr., 45(3), 678–689, doi:10.1175/JPO-D-14-0150.1  doi:10.1007/s00382-015-2637-7.
181    </li></ul>
182    
183    <ul><li>
184    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
185    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
186    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
187  </li></ul>  </li></ul>
188    
189  <ul><li>  <ul><li>
# Line 141  V. Zemskova, B. White, and A. Scotti, 20 Line 205  V. Zemskova, B. White, and A. Scotti, 20
205  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
206  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., submitted.
207  </li></ul>  </li></ul>
208    
209    <ul><li>
210    Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
211    (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97,
212    doi:10.1080/1755876X.2015.1022329.
213    </li></ul>
214    

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22