/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by dimitri, Mon Jan 12 19:48:15 2015 UTC revision 1.21 by gforget, Tue Oct 27 20:21:15 2015 UTC
# Line 1  Line 1 
1    
2    <ul><li>
3    Forget, G., D. Ferreira, and X. Liang, 2015: On the observability of
4    turbulent transport rates by argo: supporting evidence from an
5    inversion experiment. Ocean Science, 11, 839-853, doi:10.5194/os-11-839-2015.
6    </li></ul>
7    
8    <ul><li>
9    Piecuch, C. G., P. Heimbach, R. M. Ponte, and G. Forget, 2015: Sensitivity
10    of contemporary sea level trends in a global ocean state estimate to effects
11    of geothermal fluxes, Ocean Model., in press.
12    </li></ul>
13    
14  <ul><li>  <ul><li>
15  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy
16  mixing in a circumpolar channel. Ocean Modelling, submitted.  mixing in a circumpolar channel. Ocean Modelling, submitted.
# Line 9  K. Bowman, and H. Zhang, 2015: Line 22  K. Bowman, and H. Zhang, 2015:
22  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
23  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
24  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Modelling,
25  submitted.  in press.
26    </li></ul>
27    
28    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
29    the origins of advective heat transport variability in the North Atlantic. J.
30    Clim., 18, 3943-3956.
31    </li></ul>
32    
33    <ul><li>
34    R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
35    Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
36    45, 387-406.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  K. Childers, 2015:
41  origins of advective heat transport variability in the North Atlantic. J.  <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
42  Clim., in revision.  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
43    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
44    </li></ul>
45    
46    <ul><li>
47    P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
48    2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
49    importance of vertical resolution in sea ice algae production models.</a>
50    J. Mar. Syst., 145, 69-90.
51    </li></ul>
52    
53    <ul><li>
54    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
55    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
56    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
57  </li></ul>  </li></ul>
58    
59  <ul><li>  <ul><li>
60  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
61  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
62  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
63  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
64  </li></ul>  </li></ul>
65    
66  <ul><li>  <ul><li>
67  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015: The partition of regional sea level
68  variability.  Prog. Oceanogr., submitted.  variability.  Prog. Oceanogr., (137), 173-195, doi:10.1016/j.pocean.2015.06.002.
69    </ul></li>
70    
71    <ul><li>
72    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch,
73    2015: ECCO version 4: an integrated framework for non-linear inverse modeling
74    and global ocean state estimation. Geoscientific Model Development, 8,
75    3071-3104, doi:10.5194/gmd-8-3071-2015.
76    </ul></li>
77    
78    <ul><li>
79    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
80    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
81    Floats. JPO, 45, 1773-1793.
82    </ul></li>
83    
84    <ul><li>
85    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
86    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
87    Modeling the impact of riverine DON removal by marine bacterioplankton on
88    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
89    </li></ul>
90    
91    <ul><li>
92    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
93    fluctuation of ocean bottom pressure and sea level across the deep ocean
94    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
95    152-172.
96  </ul></li>  </ul></li>
97    
98  <ul><li>  <ul><li>
99  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
100  Quantifying the processes controlling intraseasonal mixed-layer  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
101  temperature variability in the tropical Indian  Quantifying the processes controlling intraseasonal mixed-layer temperature
102  Ocean. J. Geophys. Res., in press.  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
103  </li></ul>  </li></ul>
104    
105  <ul><li>  <ul><li>
# Line 46  Tech., 32, 131-143. Line 111  Tech., 32, 131-143.
111  </li></ul>  </li></ul>
112    
113  <ul><li>  <ul><li>
114  I. Hoteit, T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson,  P. Heimbach, 2015: Application of derivative code in climate modeling.
115  B. Cornuelle, A. Koehl, and P. Heimbach, 2013: A MITgcm/DART ensemble  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
116  analysis and prediction system: Development and application to the  Adjoint Methods in Computational Science, Engineering, and Finance.
117  Gulf of Mexico. Dynamics of Atmospheres and Oceans, in press.  Dagstuhl Reports, 4, 14-16.
118  </li></ul>  </li></ul>
119    
120  <ul><li>  <ul><li>
121  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
122  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833.
123  </ul></li>  </ul></li>
124    
125  <ul><li>  <ul><li>
126  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
127  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
128  2015: Quantifying the observability of CO2 flux uncertainty in  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
129  atmospheric CO2 records using products from NASA's Carbon Monitoring  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
130  Flux Pilot Project. J. Geophys. Res., in press.  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
131    734-765.
132  </li></ul>  </li></ul>
133    
134  <ul><li>  <ul><li>
135  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
136  structure  of ocean pressure fluctuations with application  structure  of ocean pressure fluctuations with application to
137  to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
138  </li></ul>  </li></ul>
139    
140  <ul><li>  <ul><li>
# Line 78  sensing data. J. Geophys. Res., submitte Line 144  sensing data. J. Geophys. Res., submitte
144  </li></ul>  </li></ul>
145    
146  <ul><li>  <ul><li>
147  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
148  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
149  self-attraction and loading effects, J. Phys. Oceanogr., in revision.  environmental drivers of mangrove propagule dispersal: A field and modeling
150    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Université
151    Libre de Bruxelles.
152    </li></ul>
153    
154    <ul><li>
155    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
156    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
157    doi:10.1007/s00382-015-2554-9
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
162  discharge and river temperature data set for the pan-Arctic region. Ocean  mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
163  Modelling, in press.  Climate Dynamics, 1-17, doi:10.1007/s00382-015-2762-3.
164    </li></ul>
165    
166    <ul><li>
167    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
168    layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
169    doi:10.1007/s00382-015-2637-7.
170    </li></ul>
171    
172    <ul><li>
173    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
174    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
175    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
176    </li></ul>
177    
178    <ul><li>
179    J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
180    2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
181    river discharge and river temperature climatology data set for the
182    pan-Arctic region.</a> Ocean Modelling, 88, 1-15.
183  </li></ul>  </li></ul>
184    
185  <ul><li>  <ul><li>
# Line 101  V. Zemskova, B. White, and A. Scotti, 20 Line 194  V. Zemskova, B. White, and A. Scotti, 20
194  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
195  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., submitted.
196  </li></ul>  </li></ul>
197    
198    <ul><li>
199    Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
200    (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97,
201    doi:10.1080/1755876X.2015.1022329.
202    </li></ul>
203    

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.21

  ViewVC Help
Powered by ViewVC 1.1.22