/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by dimitri, Mon Jan 12 19:33:18 2015 UTC revision 1.17 by dimitri, Fri Jun 5 15:33:31 2015 UTC
# Line 12  biogeochemistry general circulation mode Line 12  biogeochemistry general circulation mode
12  submitted.  submitted.
13  </li></ul>  </li></ul>
14    
15    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
16    the origins of advective heat transport variability in the North Atlantic. J.
17    Clim., 18, 3943-3956.
18    </li></ul>
19    
20  <ul><li>  <ul><li>
21  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
22  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
23  Clim., in revision.  45, 387-406.
24    </li></ul>
25    
26    <ul><li>
27    K. Childers, 2015:
28    <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
29    Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
30    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
31    </li></ul>
32    
33    <ul><li>
34    P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
35    2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
36    importance of vertical resolution in sea ice algae production models.</a>
37    J. Mar. Syst., 145, 69-90.
38  </li></ul>  </li></ul>
39    
40  <ul><li>  <ul><li>
41  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
42  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
43  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
44  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., in press.
45  </li></ul>  </li></ul>
46    
47  <ul><li>  <ul><li>
48  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015: The partition of regional sea level
49  variability.  Prog. Oceanogr., submitted.  variability.  Prog. Oceanogr., accepted.
50    </ul></li>
51    
52    <ul><li>
53    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch,
54    2015: ECCO version 4: an integrated framework for non-linear inverse modeling
55    and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 3653-3743.
56    </ul></li>
57    
58    <ul><li>
59    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
60    fluctuation of ocean bottom pressure and sea level across the deep ocean
61    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
62    152-172.
63  </ul></li>  </ul></li>
64    
65  <ul><li>  <ul><li>
66  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
67  Quantifying the processes controlling intraseasonal mixed-layer  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
68  temperature variability in the tropical Indian  Quantifying the processes controlling intraseasonal mixed-layer temperature
69  Ocean. J. Geophys. Res., in press.  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
70  </li></ul>  </li></ul>
71    
72  <ul><li>  <ul><li>
# Line 46  Tech., 32, 131-143. Line 78  Tech., 32, 131-143.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
81    P. Heimbach, 2015: Application of derivative code in climate modeling.
82    in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
83    Adjoint Methods in Computational Science, Engineering, and Finance.
84    Dagstuhl Reports, 4, 14-16.
85    </li></ul>
86    
87    <ul><li>
88  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
89  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833,
90  </ul></li>  </ul></li>
91    
92  <ul><li>  <ul><li>
93  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
94  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
95  2015: Quantifying the observability of CO2 flux uncertainty in  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
96  atmospheric CO2 records using products from NASA's Carbon Monitoring  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
97  Flux Pilot Project. J. Geophys. Res., in press.  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
98    734-765.
99  </li></ul>  </li></ul>
100    
101  <ul><li>  <ul><li>
102  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
103  structure  of ocean pressure fluctuations with application  structure  of ocean pressure fluctuations with application to
104  to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
105  </li></ul>  </li></ul>
106    
107  <ul><li>  <ul><li>
# Line 71  sensing data. J. Geophys. Res., submitte Line 111  sensing data. J. Geophys. Res., submitte
111  </li></ul>  </li></ul>
112    
113  <ul><li>  <ul><li>
114  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
115  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
116  self-attraction and loading effects, J. Phys. Oceanogr., in revision.  environmental drivers of mangrove propagule dispersal: A field and modeling
117    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Université
118    Libre de Bruxelles.
119    </li></ul>
120    
121    <ul><li>
122    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
123    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
124    doi:10.1007/s00382-015-2554-9
125    </li></ul>
126    
127    <ul><li>
128    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
129    layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
130    doi:10.1007/s00382-015-2637-7.
131    </li></ul>
132    
133    <ul><li>
134    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
135    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
136    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
140  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
141  discharge and river temperature data set for the pan-Arctic region. Ocean  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
142  Modelling, in press.  river discharge and river temperature climatology data set for the
143    pan-Arctic region.</a> Ocean Modelling, 88, 1-15.
144  </li></ul>  </li></ul>
145    
146  <ul><li>  <ul><li>

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22