/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.14 by heimbach, Mon May 25 12:13:00 2015 UTC revision 1.28 by dimitri, Sat Jul 9 04:57:32 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  the origins of advective heat transport variability in the North Atlantic. J.
16  origins of advective heat transport variability in the North Atlantic. J.  Clim., 18, 3943-3956.
 Clim., 18(10), 3943-3956, doi:10.1175/JCLI-D-14-00579.1.  
17  </li></ul>  </li></ul>
18    
19  <ul><li>  <ul><li>
20  K. Childers, 2015:  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21  <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>  45, 387-406.
 Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.  
23  </li></ul>  </li></ul>
24    
25  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 30  J. Mar. Syst., 145, 69-90.
30  </li></ul>  </li></ul>
31    
32  <ul><li>  <ul><li>
33    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36    doi:10.1007/s00382-015-2796-6
37    </li></ul>
38    
39    <ul><li>
40  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
43  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44    </li></ul>
45    
46    <ul><li>
47    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48    turbulent transport rates by argo: supporting evidence from an
49    inversion experiment. Ocean Science, 11, 839-853.
50  </li></ul>  </li></ul>
51    
52  <ul><li>  <ul><li>
53  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
54  variability.  Prog. Oceanogr., n revision.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55    The partition of regional sea level variability.</a> Prog. Oceanogr.,
56    137, 173-195.
57    </ul></li>
58    
59    <ul><li>
60    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61    C. Wunsch, 2015:
62    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63    ECCO version 4: an integrated framework for non-linear inverse
64    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65    3071-3104.
66  </ul></li>  </ul></li>
67    
68  <ul><li>  <ul><li>
69  Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 3653-3743, doi:10.5194/gmdd-8-3653-2015.  The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73  </ul></li>  </ul></li>
74    
75  <ul><li>  <ul><li>
76    I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77    Examples from the Consortium for Estimating the Circulation and Climate of the
78    Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79    Les Houches School of Physics: Special Issue, June 2012.
80    </li></ul>
81    
82    <ul><li>
83    I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84    fluctuation of ocean bottom pressure and sea level across the deep ocean
85    basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86    </li></ul>
87    
88    <ul><li>
89  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91  Quantifying the processes controlling intraseasonal mixed-layer temperature  Quantifying the processes controlling intraseasonal mixed-layer temperature
# Line 64  Tech., 32, 131-143. Line 101  Tech., 32, 131-143.
101  </li></ul>  </li></ul>
102    
103  <ul><li>  <ul><li>
104  Heimbach, P., 2015: Application of derivative code in climate modeling.  P. Heimbach, 2015: Application of derivative code in climate modeling.
105  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106  Adjoint Methods in Computational Science, Engineering, and Finance.  Adjoint Methods in Computational Science, Engineering, and Finance.
107  Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1  Dagstuhl Reports, 4, 14-16.
108    </li></ul>
109    
110    <ul><li>
111    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113    Modeling the impact of riverine DON removal by marine bacterioplankton on
114    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119  Vertical redistribution of oceanic heat. 28(9), 3821-3833,  Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120  doi:10.1175/JCLI-D-14-00550.1.  </ul></li>
121    
122    <ul><li>
123    K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125    Floats. J. Phys. Oceanogr., 45, 1773-1793.
126  </ul></li>  </ul></li>
127    
128  <ul><li>  <ul><li>
# Line 86  from NASA's Carbon Monitoring Flux Pilot Line 135  from NASA's Carbon Monitoring Flux Pilot
135  </li></ul>  </li></ul>
136    
137  <ul><li>  <ul><li>
138    C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic
139    Rossby waves in the northeast tropical Pacific Ocean. J. Geophys.
140    Res., 120, 2449-2459.
141    </li></ul>
142    
143    <ul><li>
144  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
145  structure  of ocean pressure fluctuations with application to  structure  of ocean pressure fluctuations with application to
146  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.  satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
147    </li></ul>
148    
149    <ul><li>
150    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
151    of contemporary sea level trends in a global ocean state estimate to effects
152    of geothermal fluxes, Ocean Model., 96, 214-220.
153    </li></ul>
154    
155    <ul><li>
156    K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
157    and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
158    </li></ul>
159    
160    <ul><li>
161    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
162    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
163    doi:10.1007/s00382-015-2554-9
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
168  deformation in a coupled ocean-sea ice model and in satellite remote  mixed layer depths in the north pacific detected by an ensemble of ocean
169  sensing data. J. Geophys. Res., submitted.  syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
170  </li></ul>  </li></ul>
171    
172  <ul><li>  <ul><li>
173  Storto, A., and 36 others, 2015: Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2554-9  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
174    mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
175    doi:10.1007/s00382-015-2637-7
176  </li></ul>  </li></ul>
177    
178  <ul><li>  <ul><li>
179  Vinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., and Davis, J. L., 2015:  T. Van der Stocken, 2015:
180  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects.  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
181  J. Phys. Oceanogr., 45(3), 678–689, doi:10.1175/JPO-D-14-0150.1  environmental drivers of mangrove propagule dispersal: A field and modeling
182    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite
183    Libre de Bruxelles.
184    </li></ul>
185    
186    <ul><li>
187    E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics
188    of Agulhas rings affect interocean plankton transport, Science, Vol. 348,
189    6237.
190    </li></ul>
191    
192    <ul><li>
193    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
194    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
195    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
196    </li></ul>
197    
198    <ul><li>
199    X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
200    <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
201    Regional ocean forecasting systems and their applications: Design
202    consideration of such a system for the South China Sea.</a>
203    Aquat. Ecosyst. Health Manag., 18, 443-453.
204  </li></ul>  </li></ul>
205    
206  <ul><li>  <ul><li>
207  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
208  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
209  river discharge and river temperature climatology data set for the  river discharge and river temperature climatology data set for the
210  pan-Arctic region.</a> Ocean Modelling, 88, 1-15.  pan-Arctic region.</a> Ocean Model., 88, 1-15.
211  </li></ul>  </li></ul>
212    
213  <ul><li>  <ul><li>
214  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
215  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
216  vertical mixing using seasonally averaged observations from the  1460-1472.
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
217  </li></ul>  </li></ul>
218    
219  <ul><li>  <ul><li>
220  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
221  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
222  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
223    </li></ul>
224    
225    <ul><li>
226    Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
227    Biogeochemical drivers of the fate of riverine mercury discharged to the
228    global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
229  </li></ul>  </li></ul>

Legend:
Removed from v.1.14  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22