/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.13 by heimbach, Mon Mar 30 15:55:50 2015 UTC revision 1.22 by dimitri, Thu Nov 5 01:09:22 2015 UTC
# Line 1  Line 1 
1    
2    <ul><li>
3    Forget, G., D. Ferreira, and X. Liang, 2015: On the observability of
4    turbulent transport rates by argo: supporting evidence from an
5    inversion experiment. Ocean Science, 11, 839-853, doi:10.5194/os-11-839-2015.
6    </li></ul>
7    
8    <ul><li>
9    Piecuch, C. G., P. Heimbach, R. M. Ponte, and G. Forget, 2015: Sensitivity
10    of contemporary sea level trends in a global ocean state estimate to effects
11    of geothermal fluxes, Ocean Model., in press.
12    </li></ul>
13    
14  <ul><li>  <ul><li>
15  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy
16  mixing in a circumpolar channel. Ocean Modelling, submitted.  mixing in a circumpolar channel. Ocean Modelling, submitted.
# Line 9  K. Bowman, and H. Zhang, 2015: Line 22  K. Bowman, and H. Zhang, 2015:
22  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
23  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
24  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Modelling,
25  submitted.  in press.
26    </li></ul>
27    
28    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
29    the origins of advective heat transport variability in the North Atlantic. J.
30    Clim., 18, 3943-3956.
31  </li></ul>  </li></ul>
32    
33  <ul><li>  <ul><li>
34  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
35  origins of advective heat transport variability in the North Atlantic. J.  Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
36  Clim., in press, doi:10.1175/JCLI-D-14-00579.1.  45, 387-406.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
# Line 33  J. Mar. Syst., 145, 69-90. Line 51  J. Mar. Syst., 145, 69-90.
51  </li></ul>  </li></ul>
52    
53  <ul><li>  <ul><li>
54    I. Fenty, D. Menemenlis, and H. Zhang, 2015:
55    <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
56    Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press.
57    </li></ul>
58    
59    <ul><li>
60  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
61  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
62  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
63  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
64  </li></ul>  </li></ul>
65    
66  <ul><li>  <ul><li>
67  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  G. Forget and R.M. Ponte, 2015:
68  variability.  Prog. Oceanogr., submitted.  <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
69    The partition of regional sea level variability.</a> Prog. Oceanogr.,
70    137, 173-195.
71    </ul></li>
72    
73    <ul><li>
74    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
75    C. Wunsch, 2015:
76    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
77    ECCO version 4: an integrated framework for non-linear inverse
78    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
79    3071-3104.
80    </ul></li>
81    
82    <ul><li>
83    G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
84    R.M. Ponte, 2015:
85    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
86    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
87    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
88    </ul></li>
89    
90    <ul><li>
91    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
92    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
93    Floats. JPO, 45, 1773-1793.
94  </ul></li>  </ul></li>
95    
96  <ul><li>  <ul><li>
97  Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015:  V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
98  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation.  <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
99  Geoscientific Model Development, submitted.  Modeling the impact of riverine DON removal by marine bacterioplankton on
100    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
101    </li></ul>
102    
103    <ul><li>
104    I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
105    fluctuation of ocean bottom pressure and sea level across the deep ocean
106    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
107    152-172.
108  </ul></li>  </ul></li>
109    
110  <ul><li>  <ul><li>
# Line 66  Tech., 32, 131-143. Line 123  Tech., 32, 131-143.
123  </li></ul>  </li></ul>
124    
125  <ul><li>  <ul><li>
126  Heimbach, P., 2015: Application of derivative code in climate modeling.  P. Heimbach, 2015: Application of derivative code in climate modeling.
127  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
128  Adjoint Methods in Computational Science, Engineering, and Finance.  Adjoint Methods in Computational Science, Engineering, and Finance.
129  Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1  Dagstuhl Reports, 4, 14-16.
130  </li></ul>  </li></ul>
131    
132  <ul><li>  <ul><li>
133  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
134  Vertical redistribution of oceanic heat. in press,  Vertical redistribution of oceanic heat. 28, 3821-3833.
 in press, doi:10.1175/JCLI-D-14-00550.1.  
135  </ul></li>  </ul></li>
136    
137  <ul><li>  <ul><li>
# Line 100  sensing data. J. Geophys. Res., submitte Line 156  sensing data. J. Geophys. Res., submitte
156  </li></ul>  </li></ul>
157    
158  <ul><li>  <ul><li>
159  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  T. Van der Stocken, 2015:
160  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
161  self-attraction and loading effects, J. Phys. Oceanogr., in press.  environmental drivers of mangrove propagule dispersal: A field and modeling
162    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Université
163    Libre de Bruxelles.
164    </li></ul>
165    
166    <ul><li>
167    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
168    ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press,
169    doi:10.1007/s00382-015-2554-9
170    </li></ul>
171    
172    <ul><li>
173    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
174    mixed layer depths in the north pacific detected by an ensemble of ocean syntheses.
175    Climate Dynamics, 1-17, doi:10.1007/s00382-015-2762-3.
176    </li></ul>
177    
178    <ul><li>
179    T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed
180    layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press,
181    doi:10.1007/s00382-015-2637-7.
182    </li></ul>
183    
184    <ul><li>
185    N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
186    2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
187    Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
188  </li></ul>  </li></ul>
189    
190  <ul><li>  <ul><li>
# Line 124  V. Zemskova, B. White, and A. Scotti, 20 Line 206  V. Zemskova, B. White, and A. Scotti, 20
206  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
207  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., submitted.
208  </li></ul>  </li></ul>
209    
210    <ul><li>
211    Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
212    (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97,
213    doi:10.1080/1755876X.2015.1022329.
214    </li></ul>
215    

Legend:
Removed from v.1.13  
changed lines
  Added in v.1.22

  ViewVC Help
Powered by ViewVC 1.1.22