/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by dimitri, Mon Jan 12 19:33:18 2015 UTC revision 1.25 by dimitri, Tue Jan 19 18:51:00 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2015: Diagnostics of eddy  M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
# Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk Line 8  H. Brix, D. Menemenlis, C. Hill, S. Dutk
8  K. Bowman, and H. Zhang, 2015:  K. Bowman, and H. Zhang, 2015:
9  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using  <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10  Green's Functions to initialize and adjust a global, eddying ocean  Green's Functions to initialize and adjust a global, eddying ocean
11  biogeochemistry general circulation model.</a> Ocean Modelling,  biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12  submitted.  </li></ul>
13    
14    <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15    the origins of advective heat transport variability in the North Atlantic. J.
16    Clim., 18, 3943-3956.
17    </li></ul>
18    
19    <ul><li>
20    R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21    Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22    45, 387-406.
23    </li></ul>
24    
25    <ul><li>
26    K. Childers, 2015:
27    <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
28    Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
29    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
30    </li></ul>
31    
32    <ul><li>
33    P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
34    2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
35    importance of vertical resolution in sea ice algae production models.</a>
36    J. Mar. Syst., 145, 69-90.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the  I. Fenty, D. Menemenlis, and H. Zhang, 2015:
41  origins of advective heat transport variability in the North Atlantic. J.  <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
42  Clim., in revision.  Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
43    doi:10.1007/s00382-015-2796-6
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:  M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
48  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">  <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
49  Role of tides on the formation of the Antarctic Slope Front at the  Role of tides on the formation of the Antarctic Slope Front at the
50  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
51    </li></ul>
52    
53    <ul><li>
54    G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
55    turbulent transport rates by argo: supporting evidence from an
56    inversion experiment. Ocean Science, 11, 839-853.
57    </li></ul>
58    
59    <ul><li>
60    G. Forget and R.M. Ponte, 2015:
61    <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
62    The partition of regional sea level variability.</a> Prog. Oceanogr.,
63    137, 173-195.
64    </ul></li>
65    
66    <ul><li>
67    G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
68    C. Wunsch, 2015:
69    <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
70    ECCO version 4: an integrated framework for non-linear inverse
71    modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
72    3071-3104.
73    </ul></li>
74    
75    <ul><li>
76    G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
77    R.M. Ponte, 2015:
78    <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
79    Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
80    CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
81    </ul></li>
82    
83    <ul><li>
84    McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
85    Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
86    Floats. JPO, 45, 1773-1793.
87    </ul></li>
88    
89    <ul><li>
90    V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
91    <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
92    Modeling the impact of riverine DON removal by marine bacterioplankton on
93    primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
94  </li></ul>  </li></ul>
95    
96  <ul><li>  <ul><li>
97  G. Forget and R.M. Ponte, 2015: The partition of regional sea level  I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
98  variability.  Prog. Oceanogr., submitted.  fluctuation of ocean bottom pressure and sea level across the deep ocean
99    basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134,
100    152-172.
101  </ul></li>  </ul></li>
102    
103  <ul><li>  <ul><li>
104  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015:  D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
105  Quantifying the processes controlling intraseasonal mixed-layer  2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
106  temperature variability in the tropical Indian  Quantifying the processes controlling intraseasonal mixed-layer temperature
107  Ocean. J. Geophys. Res., in press.  variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
108  </li></ul>  </li></ul>
109    
110  <ul><li>  <ul><li>
# Line 46  Tech., 32, 131-143. Line 116  Tech., 32, 131-143.
116  </li></ul>  </li></ul>
117    
118  <ul><li>  <ul><li>
119    P. Heimbach, 2015: Application of derivative code in climate modeling.
120    in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
121    Adjoint Methods in Computational Science, Engineering, and Finance.
122    Dagstuhl Reports, 4, 14-16.
123    </li></ul>
124    
125    <ul><li>
126  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
127  Vertical redistribution of oceanic heat. Submitted.  Vertical redistribution of oceanic heat. 28, 3821-3833.
128  </ul></li>  </ul></li>
129    
130  <ul><li>  <ul><li>
131  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
132  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
133  2015: Quantifying the observability of CO2 flux uncertainty in  2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
134  atmospheric CO2 records using products from NASA's Carbon Monitoring  magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
135  Flux Pilot Project. J. Geophys. Res., in press.  from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120,
136    734-765.
137  </li></ul>  </li></ul>
138    
139  <ul><li>  <ul><li>
140  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical  C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
141  structure  of ocean pressure fluctuations with application  structure  of ocean pressure fluctuations with application to
142  to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.  satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
143    </li></ul>
144    
145    <ul><li>
146    C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
147    of contemporary sea level trends in a global ocean state estimate to effects
148    of geothermal fluxes, Ocean Model., 96, 214-220.
149    </li></ul>
150    
151    <ul><li>
152    T. Van der Stocken, 2015:
153    <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
154    environmental drivers of mangrove propagule dispersal: A field and modeling
155    approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
156    </li></ul>
157    
158    <ul><li>
159    A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
160    ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
161    doi:10.1007/s00382-015-2554-9
162    </li></ul>
163    
164    <ul><li>
165    Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
166    mixed layer depths in the north pacific detected by an ensemble of ocean
167    syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
168  </li></ul>  </li></ul>
169    
170  <ul><li>  <ul><li>
171  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice  T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
172  deformation in a coupled ocean-sea ice model and in satellite remote  mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
173  sensing data. J. Geophys. Res., submitted.  doi:10.1007/s00382-015-2637-7
174  </li></ul>  </li></ul>
175    
176  <ul><li>  <ul><li>
177  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,  N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
178  and J. Davis, 2015: Dynamic adjustment of the ocean circulation to  2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
179  self-attraction and loading effects, J. Phys. Oceanogr., in revision.  Loading Effects.  J. Phys. Oceanogr., 45, 678-689.
180  </li></ul>  </li></ul>
181    
182  <ul><li>  <ul><li>
183  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river  X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
184  discharge and river temperature data set for the pan-Arctic region. Ocean  <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
185  Modelling, in press.  Regional ocean forecasting systems and their applications: Design
186    consideration of such a system for the South China Sea.</a> Aquatic
187    Ecosystem Health & Management, 18, 443-453.
188  </li></ul>  </li></ul>
189    
190  <ul><li>  <ul><li>
191  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
192  I. Hoteit, 2015: Tests of the K-Profile Parameterization of turbulent  2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
193  vertical mixing using seasonally averaged observations from the  river discharge and river temperature climatology data set for the
194  TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  pan-Arctic region.</a> Ocean Model., 88, 1-15.
195  </li></ul>  </li></ul>
196    
197  <ul><li>  <ul><li>
198  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy  V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
199  and the general circulation: Partitioning wind, buoyancy forcing, and  and the general circulation: Partitioning wind, buoyancy forcing, and
200  irreversible mixing. J. Phys. Oceanogr., submitted.  irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
201  </li></ul>  </li></ul>

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22