| 1 | 
<ul><li> | 
| 2 | 
M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project | 
| 3 | 
(ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97. | 
| 4 | 
</li></ul> | 
| 5 | 
 | 
| 6 | 
<ul><li> | 
| 7 | 
H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, | 
| 8 | 
K. Bowman, and H. Zhang, 2015: | 
| 9 | 
<a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using | 
| 10 | 
Green's Functions to initialize and adjust a global, eddying ocean | 
| 11 | 
biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14. | 
| 12 | 
</li></ul> | 
| 13 | 
 | 
| 14 | 
<ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining | 
| 15 | 
the origins of advective heat transport variability in the North Atlantic. J. | 
| 16 | 
Clim., 18, 3943-3956. doi:10.1175/JCLI-D-14-00579.1. | 
| 17 | 
</li></ul> | 
| 18 | 
 | 
| 19 | 
<ul><li> | 
| 20 | 
R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting | 
| 21 | 
Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., | 
| 22 | 
45, 387-406. | 
| 23 | 
</li></ul> | 
| 24 | 
 | 
| 25 | 
<ul><li> | 
| 26 | 
K. Childers, 2015: | 
| 27 | 
<a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf"> | 
| 28 | 
Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a> | 
| 29 | 
Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY. | 
| 30 | 
</li></ul> | 
| 31 | 
 | 
| 32 | 
<ul><li> | 
| 33 | 
P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson, | 
| 34 | 
2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The | 
| 35 | 
importance of vertical resolution in sea ice algae production models.</a> | 
| 36 | 
J. Mar. Syst., 145, 69-90. | 
| 37 | 
</li></ul> | 
| 38 | 
 | 
| 39 | 
<ul><li> | 
| 40 | 
I. Fenty, D. Menemenlis, and H. Zhang, 2015: | 
| 41 | 
<a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf"> | 
| 42 | 
Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., | 
| 43 | 
doi:10.1007/s00382-015-2796-6 | 
| 44 | 
</li></ul> | 
| 45 | 
 | 
| 46 | 
<ul><li> | 
| 47 | 
M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015: | 
| 48 | 
<a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf"> | 
| 49 | 
Role of tides on the formation of the Antarctic Slope Front at the | 
| 50 | 
Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680. | 
| 51 | 
</li></ul> | 
| 52 | 
 | 
| 53 | 
<ul><li> | 
| 54 | 
G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of | 
| 55 | 
turbulent transport rates by argo: supporting evidence from an | 
| 56 | 
inversion experiment. Ocean Science, 11, 839-853. | 
| 57 | 
</li></ul> | 
| 58 | 
 | 
| 59 | 
<ul><li> | 
| 60 | 
G. Forget and R.M. Ponte, 2015: | 
| 61 | 
<a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354"> | 
| 62 | 
The partition of regional sea level variability.</a> Prog. Oceanogr., | 
| 63 | 
137, 173-195. | 
| 64 | 
</ul></li> | 
| 65 | 
 | 
| 66 | 
<ul><li> | 
| 67 | 
G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and | 
| 68 | 
C. Wunsch, 2015: | 
| 69 | 
<a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf"> | 
| 70 | 
ECCO version 4: an integrated framework for non-linear inverse | 
| 71 | 
modeling and global ocean state estimation.</a> Geosci. Model Dev., 8, | 
| 72 | 
3071-3104. doi:10.5194/gmd-8-3071-2015. | 
| 73 | 
</ul></li> | 
| 74 | 
 | 
| 75 | 
<ul><li> | 
| 76 | 
The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015: | 
| 77 | 
<a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf"> | 
| 78 | 
Estimating the Circulation and Climate of the Ocean (ECCO): Advancing | 
| 79 | 
CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45. | 
| 80 | 
</ul></li> | 
| 81 | 
 | 
| 82 | 
<ul><li> | 
| 83 | 
McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean  | 
| 84 | 
Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling  | 
| 85 | 
Floats. JPO, 45, 1773-1793. | 
| 86 | 
</ul></li> | 
| 87 | 
 | 
| 88 | 
<ul><li> | 
| 89 | 
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015: | 
| 90 | 
<a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html"> | 
| 91 | 
Modeling the impact of riverine DON removal by marine bacterioplankton on | 
| 92 | 
primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402. | 
| 93 | 
</li></ul> | 
| 94 | 
 | 
| 95 | 
<ul><li> | 
| 96 | 
I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform | 
| 97 | 
fluctuation of ocean bottom pressure and sea level across the deep ocean | 
| 98 | 
basins of the Arctic Ocean and the Nordic Seas.  Prog. Oceanogr., 134, | 
| 99 | 
152-172. | 
| 100 | 
</ul></li> | 
| 101 | 
 | 
| 102 | 
<ul><li> | 
| 103 | 
D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, | 
| 104 | 
2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf"> | 
| 105 | 
Quantifying the processes controlling intraseasonal mixed-layer temperature | 
| 106 | 
variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715. | 
| 107 | 
</li></ul> | 
| 108 | 
 | 
| 109 | 
<ul><li> | 
| 110 | 
D. Halpern, D. Menemenlis, and X. Wang, | 
| 111 | 
2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf"> | 
| 112 | 
Impact of data assimilation on ECCO2 Equatorial Undercurrent and North | 
| 113 | 
Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean | 
| 114 | 
Tech., 32, 131-143. | 
| 115 | 
</li></ul> | 
| 116 | 
 | 
| 117 | 
<ul><li> | 
| 118 | 
P. Heimbach, 2015: Application of derivative code in climate modeling.  | 
| 119 | 
in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):  | 
| 120 | 
Adjoint Methods in Computational Science, Engineering, and Finance. | 
| 121 | 
Dagstuhl Reports, 4, 14-16. | 
| 122 | 
</li></ul> | 
| 123 | 
 | 
| 124 | 
<ul><li> | 
| 125 | 
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:  | 
| 126 | 
Vertical redistribution of oceanic heat. 28, 3821-3833. | 
| 127 | 
doi:10.1175/JCLI-D-14-00550.1. | 
| 128 | 
</ul></li> | 
| 129 | 
 | 
| 130 | 
<ul><li> | 
| 131 | 
L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux, | 
| 132 | 
K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa, | 
| 133 | 
2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the | 
| 134 | 
magnitude of CO2 flux uncertainty in atmospheric CO2 records using products | 
| 135 | 
from NASA's Carbon Monitoring Flux Pilot Project.</a>  J. Geophys. Res., 120, | 
| 136 | 
734-765. | 
| 137 | 
</li></ul> | 
| 138 | 
 | 
| 139 | 
<ul><li> | 
| 140 | 
C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical | 
| 141 | 
structure  of ocean pressure fluctuations with application to | 
| 142 | 
satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613. | 
| 143 | 
</li></ul> | 
| 144 | 
 | 
| 145 | 
<ul><li> | 
| 146 | 
C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity | 
| 147 | 
of contemporary sea level trends in a global ocean state estimate to effects | 
| 148 | 
of geothermal fluxes, Ocean Model., 96, 214-220. doi:10.1016/j.ocemod.2015.10.008. | 
| 149 | 
</li></ul> | 
| 150 | 
 | 
| 151 | 
<ul><li> | 
| 152 | 
K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521. | 
| 153 | 
</li></ul> | 
| 154 | 
 | 
| 155 | 
<ul><li> | 
| 156 | 
T. Van der Stocken, 2015: | 
| 157 | 
<a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and | 
| 158 | 
environmental drivers of mangrove propagule dispersal: A field and modeling | 
| 159 | 
approach.</a>  Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles. | 
| 160 | 
</li></ul> | 
| 161 | 
 | 
| 162 | 
<ul><li> | 
| 163 | 
A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an | 
| 164 | 
ensemble of ocean reanalyses and objective analyses. Clim. Dyn., | 
| 165 | 
doi:10.1007/s00382-015-2554-9 | 
| 166 | 
</li></ul> | 
| 167 | 
 | 
| 168 | 
<ul><li> | 
| 169 | 
Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime  | 
| 170 | 
mixed layer depths in the north pacific detected by an ensemble of ocean | 
| 171 | 
syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3 | 
| 172 | 
</li></ul> | 
| 173 | 
 | 
| 174 | 
<ul><li> | 
| 175 | 
T. Toyoda, and 32 others, 2015: Intercomparison and validation of the | 
| 176 | 
mixed layer depth fields of global ocean syntheses. Clim. Dyn., | 
| 177 | 
doi:10.1007/s00382-015-2637-7 | 
| 178 | 
</li></ul> | 
| 179 | 
 | 
| 180 | 
<ul><li> | 
| 181 | 
N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis, | 
| 182 | 
2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and | 
| 183 | 
Loading Effects.  J. Phys. Oceanogr., 45, 678-689. | 
| 184 | 
</li></ul> | 
| 185 | 
 | 
| 186 | 
<ul><li> | 
| 187 | 
X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015: | 
| 188 | 
<a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf"> | 
| 189 | 
Regional ocean forecasting systems and their applications: Design | 
| 190 | 
consideration of such a system for the South China Sea.</a> Aquatic | 
| 191 | 
Ecosystem Health & Management, 18, 443-453. | 
| 192 | 
</li></ul> | 
| 193 | 
 | 
| 194 | 
<ul><li> | 
| 195 | 
J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, | 
| 196 | 
2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new | 
| 197 | 
river discharge and river temperature climatology data set for the | 
| 198 | 
pan-Arctic region.</a> Ocean Model., 88, 1-15. | 
| 199 | 
</li></ul> | 
| 200 | 
 | 
| 201 | 
<ul><li> | 
| 202 | 
V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy | 
| 203 | 
and the general circulation: Partitioning wind, buoyancy forcing, and | 
| 204 | 
irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531. | 
| 205 | 
</li></ul> |