| 1 |
gforget |
1.21 |
<ul><li> |
| 2 |
dimitri |
1.24 |
M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project |
| 3 |
dimitri |
1.27 |
(ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97. |
| 4 |
dimitri |
1.1 |
</li></ul> |
| 5 |
|
|
|
| 6 |
|
|
<ul><li> |
| 7 |
|
|
H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, |
| 8 |
|
|
K. Bowman, and H. Zhang, 2015: |
| 9 |
|
|
<a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using |
| 10 |
|
|
Green's Functions to initialize and adjust a global, eddying ocean |
| 11 |
dimitri |
1.25 |
biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14. |
| 12 |
dimitri |
1.1 |
</li></ul> |
| 13 |
|
|
|
| 14 |
dimitri |
1.17 |
<ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining |
| 15 |
|
|
the origins of advective heat transport variability in the North Atlantic. J. |
| 16 |
dimitri |
1.27 |
Clim., 18, 3943-3956. |
| 17 |
dimitri |
1.1 |
</li></ul> |
| 18 |
|
|
|
| 19 |
|
|
<ul><li> |
| 20 |
dimitri |
1.17 |
R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting |
| 21 |
|
|
Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., |
| 22 |
|
|
45, 387-406. |
| 23 |
heimbach |
1.15 |
</li></ul> |
| 24 |
|
|
|
| 25 |
|
|
<ul><li> |
| 26 |
dimitri |
1.4 |
P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson, |
| 27 |
|
|
2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The |
| 28 |
|
|
importance of vertical resolution in sea ice algae production models.</a> |
| 29 |
|
|
J. Mar. Syst., 145, 69-90. |
| 30 |
|
|
</li></ul> |
| 31 |
|
|
|
| 32 |
|
|
<ul><li> |
| 33 |
dimitri |
1.20 |
I. Fenty, D. Menemenlis, and H. Zhang, 2015: |
| 34 |
|
|
<a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf"> |
| 35 |
dimitri |
1.25 |
Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., |
| 36 |
|
|
doi:10.1007/s00382-015-2796-6 |
| 37 |
dimitri |
1.20 |
</li></ul> |
| 38 |
|
|
|
| 39 |
|
|
<ul><li> |
| 40 |
dimitri |
1.1 |
M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015: |
| 41 |
|
|
<a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf"> |
| 42 |
|
|
Role of tides on the formation of the Antarctic Slope Front at the |
| 43 |
dimitri |
1.19 |
Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680. |
| 44 |
dimitri |
1.1 |
</li></ul> |
| 45 |
|
|
|
| 46 |
|
|
<ul><li> |
| 47 |
dimitri |
1.24 |
G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of |
| 48 |
|
|
turbulent transport rates by argo: supporting evidence from an |
| 49 |
|
|
inversion experiment. Ocean Science, 11, 839-853. |
| 50 |
|
|
</li></ul> |
| 51 |
|
|
|
| 52 |
|
|
<ul><li> |
| 53 |
dimitri |
1.22 |
G. Forget and R.M. Ponte, 2015: |
| 54 |
|
|
<a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354"> |
| 55 |
|
|
The partition of regional sea level variability.</a> Prog. Oceanogr., |
| 56 |
|
|
137, 173-195. |
| 57 |
dimitri |
1.1 |
</ul></li> |
| 58 |
|
|
|
| 59 |
|
|
<ul><li> |
| 60 |
dimitri |
1.22 |
G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and |
| 61 |
|
|
C. Wunsch, 2015: |
| 62 |
|
|
<a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf"> |
| 63 |
|
|
ECCO version 4: an integrated framework for non-linear inverse |
| 64 |
|
|
modeling and global ocean state estimation.</a> Geosci. Model Dev., 8, |
| 65 |
dimitri |
1.27 |
3071-3104. |
| 66 |
dimitri |
1.22 |
</ul></li> |
| 67 |
|
|
|
| 68 |
|
|
<ul><li> |
| 69 |
heimbach |
1.26 |
The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015: |
| 70 |
dimitri |
1.22 |
<a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf"> |
| 71 |
|
|
Estimating the Circulation and Climate of the Ocean (ECCO): Advancing |
| 72 |
|
|
CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45. |
| 73 |
gforget |
1.21 |
</ul></li> |
| 74 |
|
|
|
| 75 |
|
|
<ul><li> |
| 76 |
dimitri |
1.27 |
I. Fukumori, 2015: Combining models and data in large-scale oceanography: |
| 77 |
|
|
Examples from the Consortium for Estimating the Circulation and Climate of the |
| 78 |
|
|
Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the |
| 79 |
|
|
Les Houches School of Physics: Special Issue, June 2012. |
| 80 |
dimitri |
1.18 |
</li></ul> |
| 81 |
|
|
|
| 82 |
|
|
<ul><li> |
| 83 |
dimitri |
1.27 |
I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform |
| 84 |
dimitri |
1.17 |
fluctuation of ocean bottom pressure and sea level across the deep ocean |
| 85 |
dimitri |
1.27 |
basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172. |
| 86 |
|
|
</li></ul> |
| 87 |
heimbach |
1.15 |
|
| 88 |
|
|
<ul><li> |
| 89 |
dimitri |
1.7 |
D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, |
| 90 |
|
|
2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf"> |
| 91 |
|
|
Quantifying the processes controlling intraseasonal mixed-layer temperature |
| 92 |
dimitri |
1.12 |
variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715. |
| 93 |
dimitri |
1.1 |
</li></ul> |
| 94 |
|
|
|
| 95 |
|
|
<ul><li> |
| 96 |
|
|
D. Halpern, D. Menemenlis, and X. Wang, |
| 97 |
|
|
2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf"> |
| 98 |
|
|
Impact of data assimilation on ECCO2 Equatorial Undercurrent and North |
| 99 |
|
|
Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean |
| 100 |
|
|
Tech., 32, 131-143. |
| 101 |
|
|
</li></ul> |
| 102 |
|
|
|
| 103 |
|
|
<ul><li> |
| 104 |
dimitri |
1.17 |
P. Heimbach, 2015: Application of derivative code in climate modeling. |
| 105 |
heimbach |
1.13 |
in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.): |
| 106 |
|
|
Adjoint Methods in Computational Science, Engineering, and Finance. |
| 107 |
dimitri |
1.17 |
Dagstuhl Reports, 4, 14-16. |
| 108 |
dimitri |
1.2 |
</li></ul> |
| 109 |
|
|
|
| 110 |
|
|
<ul><li> |
| 111 |
dimitri |
1.27 |
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015: |
| 112 |
|
|
<a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html"> |
| 113 |
|
|
Modeling the impact of riverine DON removal by marine bacterioplankton on |
| 114 |
|
|
primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402. |
| 115 |
|
|
</li></ul> |
| 116 |
|
|
|
| 117 |
|
|
<ul><li> |
| 118 |
dimitri |
1.1 |
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015: |
| 119 |
dimitri |
1.27 |
Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833. |
| 120 |
|
|
</ul></li> |
| 121 |
|
|
|
| 122 |
|
|
<ul><li> |
| 123 |
|
|
K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean |
| 124 |
|
|
Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling |
| 125 |
|
|
Floats. J. Phys. Oceanogr., 45, 1773-1793. |
| 126 |
dimitri |
1.1 |
</ul></li> |
| 127 |
|
|
|
| 128 |
|
|
<ul><li> |
| 129 |
dimitri |
1.9 |
L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux, |
| 130 |
|
|
K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa, |
| 131 |
dimitri |
1.6 |
2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the |
| 132 |
dimitri |
1.9 |
magnitude of CO2 flux uncertainty in atmospheric CO2 records using products |
| 133 |
|
|
from NASA's Carbon Monitoring Flux Pilot Project.</a> J. Geophys. Res., 120, |
| 134 |
dimitri |
1.10 |
734-765. |
| 135 |
dimitri |
1.1 |
</li></ul> |
| 136 |
|
|
|
| 137 |
|
|
<ul><li> |
| 138 |
dimitri |
1.28 |
C. Piecuch, 2015: Bottom-pressure signature of annual baroclinic |
| 139 |
|
|
Rossby waves in the northeast tropical Pacific Ocean. J. Geophys. |
| 140 |
|
|
Res., 120, 2449-2459. |
| 141 |
|
|
</li></ul> |
| 142 |
|
|
|
| 143 |
|
|
<ul><li> |
| 144 |
dimitri |
1.1 |
C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical |
| 145 |
dimitri |
1.3 |
structure of ocean pressure fluctuations with application to |
| 146 |
heimbach |
1.26 |
satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613. |
| 147 |
dimitri |
1.1 |
</li></ul> |
| 148 |
|
|
|
| 149 |
|
|
<ul><li> |
| 150 |
dimitri |
1.24 |
C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity |
| 151 |
|
|
of contemporary sea level trends in a global ocean state estimate to effects |
| 152 |
dimitri |
1.27 |
of geothermal fluxes, Ocean Model., 96, 214-220. |
| 153 |
heimbach |
1.26 |
</li></ul> |
| 154 |
|
|
|
| 155 |
|
|
<ul><li> |
| 156 |
dimitri |
1.27 |
K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction |
| 157 |
|
|
and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521. |
| 158 |
dimitri |
1.17 |
</li></ul> |
| 159 |
|
|
|
| 160 |
|
|
<ul><li> |
| 161 |
|
|
A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an |
| 162 |
dimitri |
1.25 |
ensemble of ocean reanalyses and objective analyses. Clim. Dyn., |
| 163 |
dimitri |
1.17 |
doi:10.1007/s00382-015-2554-9 |
| 164 |
heimbach |
1.14 |
</li></ul> |
| 165 |
|
|
|
| 166 |
|
|
<ul><li> |
| 167 |
gforget |
1.21 |
Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime |
| 168 |
dimitri |
1.25 |
mixed layer depths in the north pacific detected by an ensemble of ocean |
| 169 |
|
|
syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3 |
| 170 |
gforget |
1.21 |
</li></ul> |
| 171 |
|
|
|
| 172 |
|
|
<ul><li> |
| 173 |
dimitri |
1.25 |
T. Toyoda, and 32 others, 2015: Intercomparison and validation of the |
| 174 |
|
|
mixed layer depth fields of global ocean syntheses. Clim. Dyn., |
| 175 |
|
|
doi:10.1007/s00382-015-2637-7 |
| 176 |
heimbach |
1.15 |
</li></ul> |
| 177 |
|
|
|
| 178 |
|
|
<ul><li> |
| 179 |
dimitri |
1.27 |
T. Van der Stocken, 2015: |
| 180 |
|
|
<a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and |
| 181 |
|
|
environmental drivers of mangrove propagule dispersal: A field and modeling |
| 182 |
dimitri |
1.28 |
approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite |
| 183 |
|
|
Libre de Bruxelles. |
| 184 |
|
|
</li></ul> |
| 185 |
|
|
|
| 186 |
|
|
<ul><li> |
| 187 |
|
|
E. Villar, G. Farrant, M. Follows, et al, 2015, Environmental characteristics |
| 188 |
|
|
of Agulhas rings affect interocean plankton transport, Science, Vol. 348, |
| 189 |
|
|
6237. |
| 190 |
dimitri |
1.27 |
</li></ul> |
| 191 |
|
|
|
| 192 |
|
|
<ul><li> |
| 193 |
dimitri |
1.17 |
N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis, |
| 194 |
|
|
2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and |
| 195 |
|
|
Loading Effects. J. Phys. Oceanogr., 45, 678-689. |
| 196 |
dimitri |
1.1 |
</li></ul> |
| 197 |
|
|
|
| 198 |
|
|
<ul><li> |
| 199 |
dimitri |
1.24 |
X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015: |
| 200 |
|
|
<a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf"> |
| 201 |
|
|
Regional ocean forecasting systems and their applications: Design |
| 202 |
dimitri |
1.27 |
consideration of such a system for the South China Sea.</a> |
| 203 |
|
|
Aquat. Ecosyst. Health Manag., 18, 443-453. |
| 204 |
dimitri |
1.24 |
</li></ul> |
| 205 |
|
|
|
| 206 |
|
|
<ul><li> |
| 207 |
dimitri |
1.6 |
J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, |
| 208 |
|
|
2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new |
| 209 |
|
|
river discharge and river temperature climatology data set for the |
| 210 |
dimitri |
1.25 |
pan-Arctic region.</a> Ocean Model., 88, 1-15. |
| 211 |
dimitri |
1.1 |
</li></ul> |
| 212 |
|
|
|
| 213 |
|
|
<ul><li> |
| 214 |
dimitri |
1.27 |
C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the |
| 215 |
|
|
Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32, |
| 216 |
|
|
1460-1472. |
| 217 |
|
|
</li></ul> |
| 218 |
|
|
|
| 219 |
|
|
<ul><li> |
| 220 |
dimitri |
1.1 |
V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy |
| 221 |
|
|
and the general circulation: Partitioning wind, buoyancy forcing, and |
| 222 |
dimitri |
1.25 |
irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531. |
| 223 |
dimitri |
1.1 |
</li></ul> |
| 224 |
dimitri |
1.27 |
|
| 225 |
|
|
<ul><li> |
| 226 |
|
|
Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015: |
| 227 |
|
|
Biogeochemical drivers of the fate of riverine mercury discharged to the |
| 228 |
|
|
global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864. |
| 229 |
|
|
</li></ul> |