| 4 |
</li></ul> |
</li></ul> |
| 5 |
|
|
| 6 |
<ul><li> |
<ul><li> |
| 7 |
|
M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project |
| 8 |
|
(ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97. |
| 9 |
|
</li></ul> |
| 10 |
|
|
| 11 |
|
<ul><li> |
| 12 |
H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, |
H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, |
| 13 |
K. Bowman, and H. Zhang, 2015: |
K. Bowman, and H. Zhang, 2015: |
| 14 |
<a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using |
<a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using |
| 15 |
Green's Functions to initialize and adjust a global, eddying ocean |
Green's Functions to initialize and adjust a global, eddying ocean |
| 16 |
biogeochemistry general circulation model.</a> Ocean Modelling, |
biogeochemistry general circulation model.</a> Ocean Modelling, 95, 1-14. |
|
submitted. |
|
| 17 |
</li></ul> |
</li></ul> |
| 18 |
|
|
| 19 |
<ul><li> |
<ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining |
| 20 |
M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining the |
the origins of advective heat transport variability in the North Atlantic. J. |
| 21 |
origins of advective heat transport variability in the North Atlantic. J. |
Clim., 18, 3943-3956. |
|
Clim., 18(10), 3943-3956, doi:10.1175/JCLI-D-14-00579.1. |
|
| 22 |
</li></ul> |
</li></ul> |
| 23 |
|
|
| 24 |
<ul><li> |
<ul><li> |
| 25 |
Chen, R., Flierl, G. R., & Wunsch, C., 2015: Quantifying and Interpreting Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., 45(2), 387–406. doi:10.1175/JPO-D-14-0038.1. |
R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting |
| 26 |
|
Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr., |
| 27 |
|
45, 387-406. |
| 28 |
</li></ul> |
</li></ul> |
| 29 |
|
|
| 30 |
<ul><li> |
<ul><li> |
| 42 |
</li></ul> |
</li></ul> |
| 43 |
|
|
| 44 |
<ul><li> |
<ul><li> |
| 45 |
|
I. Fenty, D. Menemenlis, and H. Zhang, 2015: |
| 46 |
|
<a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf"> |
| 47 |
|
Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn., in press. |
| 48 |
|
</li></ul> |
| 49 |
|
|
| 50 |
|
<ul><li> |
| 51 |
M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015: |
M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015: |
| 52 |
<a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf"> |
<a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf"> |
| 53 |
Role of tides on the formation of the Antarctic Slope Front at the |
Role of tides on the formation of the Antarctic Slope Front at the |
| 54 |
Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted. |
Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680. |
| 55 |
|
</li></ul> |
| 56 |
|
|
| 57 |
|
<ul><li> |
| 58 |
|
G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of |
| 59 |
|
turbulent transport rates by argo: supporting evidence from an |
| 60 |
|
inversion experiment. Ocean Science, 11, 839-853. |
| 61 |
</li></ul> |
</li></ul> |
| 62 |
|
|
| 63 |
<ul><li> |
<ul><li> |
| 64 |
G. Forget and R.M. Ponte, 2015: The partition of regional sea level |
G. Forget and R.M. Ponte, 2015: |
| 65 |
variability. Prog. Oceanogr., accepted. |
<a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354"> |
| 66 |
|
The partition of regional sea level variability.</a> Prog. Oceanogr., |
| 67 |
|
137, 173-195. |
| 68 |
|
</ul></li> |
| 69 |
|
|
| 70 |
|
<ul><li> |
| 71 |
|
G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and |
| 72 |
|
C. Wunsch, 2015: |
| 73 |
|
<a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf"> |
| 74 |
|
ECCO version 4: an integrated framework for non-linear inverse |
| 75 |
|
modeling and global ocean state estimation.</a> Geosci. Model Dev., 8, |
| 76 |
|
3071-3104. |
| 77 |
</ul></li> |
</ul></li> |
| 78 |
|
|
| 79 |
<ul><li> |
<ul><li> |
| 80 |
Forget, G., J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and C. Wunsch, 2015: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 3653-3743, doi:10.5194/gmdd-8-3653-2015. |
G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and |
| 81 |
|
R.M. Ponte, 2015: |
| 82 |
|
<a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf"> |
| 83 |
|
Estimating the Circulation and Climate of the Ocean (ECCO): Advancing |
| 84 |
|
CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45. |
| 85 |
</ul></li> |
</ul></li> |
| 86 |
|
|
| 87 |
<ul><li> |
<ul><li> |
| 88 |
Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G., 2015: |
McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean |
| 89 |
A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas. |
Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling |
| 90 |
Prog. Oceanogr., 134(C), 152–172. doi:10.1016/j.pocean.2015.01.013. |
Floats. JPO, 45, 1773-1793. |
| 91 |
|
</ul></li> |
| 92 |
|
|
| 93 |
|
<ul><li> |
| 94 |
|
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015: |
| 95 |
|
<a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html"> |
| 96 |
|
Modeling the impact of riverine DON removal by marine bacterioplankton on |
| 97 |
|
primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402. |
| 98 |
|
</li></ul> |
| 99 |
|
|
| 100 |
|
<ul><li> |
| 101 |
|
I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform |
| 102 |
|
fluctuation of ocean bottom pressure and sea level across the deep ocean |
| 103 |
|
basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, |
| 104 |
|
152-172. |
| 105 |
</ul></li> |
</ul></li> |
| 106 |
|
|
| 107 |
<ul><li> |
<ul><li> |
| 120 |
</li></ul> |
</li></ul> |
| 121 |
|
|
| 122 |
<ul><li> |
<ul><li> |
| 123 |
Heimbach, P., 2015: Application of derivative code in climate modeling. |
P. Heimbach, 2015: Application of derivative code in climate modeling. |
| 124 |
in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.): |
in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.): |
| 125 |
Adjoint Methods in Computational Science, Engineering, and Finance. |
Adjoint Methods in Computational Science, Engineering, and Finance. |
| 126 |
Dagstuhl Reports, 4(9), 14-16, doi:10.4230/DagRep.4.9.1 |
Dagstuhl Reports, 4, 14-16. |
| 127 |
</li></ul> |
</li></ul> |
| 128 |
|
|
| 129 |
<ul><li> |
<ul><li> |
| 130 |
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015: |
X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015: |
| 131 |
Vertical redistribution of oceanic heat. 28(9), 3821-3833, |
Vertical redistribution of oceanic heat. 28, 3821-3833. |
|
doi:10.1175/JCLI-D-14-00550.1. |
|
| 132 |
</ul></li> |
</ul></li> |
| 133 |
|
|
| 134 |
<ul><li> |
<ul><li> |
| 147 |
</li></ul> |
</li></ul> |
| 148 |
|
|
| 149 |
<ul><li> |
<ul><li> |
| 150 |
|
C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity |
| 151 |
|
of contemporary sea level trends in a global ocean state estimate to effects |
| 152 |
|
of geothermal fluxes, Ocean Model., in press. |
| 153 |
|
</li></ul> |
| 154 |
|
|
| 155 |
|
<ul><li> |
| 156 |
G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice |
G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2015: Sea ice |
| 157 |
deformation in a coupled ocean-sea ice model and in satellite remote |
deformation in a coupled ocean-sea ice model and in satellite remote |
| 158 |
sensing data. J. Geophys. Res., submitted. |
sensing data. J. Geophys. Res., submitted. |
| 159 |
</li></ul> |
</li></ul> |
| 160 |
|
|
| 161 |
<ul><li> |
<ul><li> |
| 162 |
Storto, A., and 36 others, 2015: Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2554-9 |
T. Van der Stocken, 2015: |
| 163 |
|
<a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and |
| 164 |
|
environmental drivers of mangrove propagule dispersal: A field and modeling |
| 165 |
|
approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles. |
| 166 |
|
</li></ul> |
| 167 |
|
|
| 168 |
|
<ul><li> |
| 169 |
|
A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an |
| 170 |
|
ensemble of ocean reanalyses and objective analyses. Clim. Dyn., in press, |
| 171 |
|
doi:10.1007/s00382-015-2554-9 |
| 172 |
|
</li></ul> |
| 173 |
|
|
| 174 |
|
<ul><li> |
| 175 |
|
Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime |
| 176 |
|
mixed layer depths in the north pacific detected by an ensemble of ocean syntheses. |
| 177 |
|
Climate Dynamics, 1-17. |
| 178 |
|
</li></ul> |
| 179 |
|
|
| 180 |
|
<ul><li> |
| 181 |
|
T. Toyoda, and 32 others, 2015: Intercomparison and validation of the mixed |
| 182 |
|
layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press, |
| 183 |
|
doi:10.1007/s00382-015-2637-7. |
| 184 |
</li></ul> |
</li></ul> |
| 185 |
|
|
| 186 |
<ul><li> |
<ul><li> |
| 187 |
Toyoda, T., and 32 others, 2015: |
N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis, |
| 188 |
Intercomparison and validation of the mixed layer depth fields of global ocean syntheses/reanalyses. Clim. Dyn., in press, doi:10.1007/s00382-015-2637-7. |
2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and |
| 189 |
|
Loading Effects. J. Phys. Oceanogr., 45, 678-689. |
| 190 |
</li></ul> |
</li></ul> |
| 191 |
|
|
| 192 |
<ul><li> |
<ul><li> |
| 193 |
Vinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.-M., and Davis, J. L., 2015: |
X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015: |
| 194 |
Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects. |
<a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf"> |
| 195 |
J. Phys. Oceanogr., 45(3), 678–689, doi:10.1175/JPO-D-14-0150.1 |
Regional ocean forecasting systems and their applications: Design |
| 196 |
|
consideration of such a system for the South China Sea.</a> Aquatic |
| 197 |
|
Ecosystem Health & Management, in press, |
| 198 |
|
doi10.1080/14634988.2015.1112123. |
| 199 |
</li></ul> |
</li></ul> |
| 200 |
|
|
| 201 |
<ul><li> |
<ul><li> |