/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Annotation of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.27 - (hide annotations) (download) (as text)
Fri Jul 8 23:25:29 2016 UTC (7 years, 9 months ago) by dimitri
Branch: MAIN
Changes since 1.26: +48 -37 lines
File MIME type: text/html
some updates from Ichiro's list

1 gforget 1.21 <ul><li>
2 dimitri 1.24 M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3 dimitri 1.27 (ora-ip). J. Oper. Oceanogr., 8 (sup1), s80-s97.
4 dimitri 1.1 </li></ul>
5    
6     <ul><li>
7     H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
8     K. Bowman, and H. Zhang, 2015:
9     <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10     Green's Functions to initialize and adjust a global, eddying ocean
11 dimitri 1.25 biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12 dimitri 1.1 </li></ul>
13    
14 dimitri 1.17 <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15     the origins of advective heat transport variability in the North Atlantic. J.
16 dimitri 1.27 Clim., 18, 3943-3956.
17 dimitri 1.1 </li></ul>
18    
19     <ul><li>
20 dimitri 1.17 R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21     Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22     45, 387-406.
23 heimbach 1.15 </li></ul>
24    
25     <ul><li>
26 dimitri 1.4 P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
27     2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
28     importance of vertical resolution in sea ice algae production models.</a>
29     J. Mar. Syst., 145, 69-90.
30     </li></ul>
31    
32     <ul><li>
33 dimitri 1.20 I. Fenty, D. Menemenlis, and H. Zhang, 2015:
34     <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
35 dimitri 1.25 Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
36     doi:10.1007/s00382-015-2796-6
37 dimitri 1.20 </li></ul>
38    
39     <ul><li>
40 dimitri 1.1 M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
41     <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
42     Role of tides on the formation of the Antarctic Slope Front at the
43 dimitri 1.19 Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
44 dimitri 1.1 </li></ul>
45    
46     <ul><li>
47 dimitri 1.24 G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
48     turbulent transport rates by argo: supporting evidence from an
49     inversion experiment. Ocean Science, 11, 839-853.
50     </li></ul>
51    
52     <ul><li>
53 dimitri 1.22 G. Forget and R.M. Ponte, 2015:
54     <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
55     The partition of regional sea level variability.</a> Prog. Oceanogr.,
56     137, 173-195.
57 dimitri 1.1 </ul></li>
58    
59     <ul><li>
60 dimitri 1.22 G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
61     C. Wunsch, 2015:
62     <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
63     ECCO version 4: an integrated framework for non-linear inverse
64     modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
65 dimitri 1.27 3071-3104.
66 dimitri 1.22 </ul></li>
67    
68     <ul><li>
69 heimbach 1.26 The ECCO Consortium (G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and R.M. Ponte), 2015:
70 dimitri 1.22 <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
71     Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
72     CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
73 gforget 1.21 </ul></li>
74    
75     <ul><li>
76 dimitri 1.27 I. Fukumori, 2015: Combining models and data in large-scale oceanography:
77     Examples from the Consortium for Estimating the Circulation and Climate of the
78     Ocean (ECCO). Advanced Data Assimilation for Geosciences: Lecture Notes of the
79     Les Houches School of Physics: Special Issue, June 2012.
80 dimitri 1.18 </li></ul>
81    
82     <ul><li>
83 dimitri 1.27 I. Fukumori, O. Wang, W. Llovel, I. Fenty and G. Forget, 2015: A near-uniform
84 dimitri 1.17 fluctuation of ocean bottom pressure and sea level across the deep ocean
85 dimitri 1.27 basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134, 152-172.
86     </li></ul>
87 heimbach 1.15
88     <ul><li>
89 dimitri 1.7 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
90     2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
91     Quantifying the processes controlling intraseasonal mixed-layer temperature
92 dimitri 1.12 variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
93 dimitri 1.1 </li></ul>
94    
95     <ul><li>
96     D. Halpern, D. Menemenlis, and X. Wang,
97     2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf">
98     Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
99     Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
100     Tech., 32, 131-143.
101     </li></ul>
102    
103     <ul><li>
104 dimitri 1.17 P. Heimbach, 2015: Application of derivative code in climate modeling.
105 heimbach 1.13 in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
106     Adjoint Methods in Computational Science, Engineering, and Finance.
107 dimitri 1.17 Dagstuhl Reports, 4, 14-16.
108 dimitri 1.2 </li></ul>
109    
110     <ul><li>
111 dimitri 1.27 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
112     <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
113     Modeling the impact of riverine DON removal by marine bacterioplankton on
114     primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
115     </li></ul>
116    
117     <ul><li>
118 dimitri 1.1 X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
119 dimitri 1.27 Vertical redistribution of oceanic heat. J. Clim., 28, 3821-3833.
120     </ul></li>
121    
122     <ul><li>
123     K. McCaffrey, B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
124     Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
125     Floats. J. Phys. Oceanogr., 45, 1773-1793.
126 dimitri 1.1 </ul></li>
127    
128     <ul><li>
129 dimitri 1.9 L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
130     K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
131 dimitri 1.6 2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
132 dimitri 1.9 magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
133     from NASA's Carbon Monitoring Flux Pilot Project.</a> J. Geophys. Res., 120,
134 dimitri 1.10 734-765.
135 dimitri 1.1 </li></ul>
136    
137     <ul><li>
138     C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
139 dimitri 1.3 structure of ocean pressure fluctuations with application to
140 heimbach 1.26 satellite-gravimetric observations. J. Atmos. Oce. Tech., 32, 603-613.
141 dimitri 1.1 </li></ul>
142    
143     <ul><li>
144 dimitri 1.24 C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
145     of contemporary sea level trends in a global ocean state estimate to effects
146 dimitri 1.27 of geothermal fluxes, Ocean Model., 96, 214-220.
147 heimbach 1.26 </li></ul>
148    
149     <ul><li>
150 dimitri 1.27 K. J. Quinn, R. M. Ponte, and M. E. Tamisiea, 2015: Impact of self-attraction
151     and loading on Earth rotation. J. Geophys. Res., 120, 4510–4521.
152 dimitri 1.17 </li></ul>
153    
154     <ul><li>
155     A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
156 dimitri 1.25 ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
157 dimitri 1.17 doi:10.1007/s00382-015-2554-9
158 heimbach 1.14 </li></ul>
159    
160     <ul><li>
161 gforget 1.21 Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
162 dimitri 1.25 mixed layer depths in the north pacific detected by an ensemble of ocean
163     syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
164 gforget 1.21 </li></ul>
165    
166     <ul><li>
167 dimitri 1.25 T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
168     mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
169     doi:10.1007/s00382-015-2637-7
170 heimbach 1.15 </li></ul>
171    
172     <ul><li>
173 dimitri 1.27 T. Van der Stocken, 2015:
174     <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
175     environmental drivers of mangrove propagule dispersal: A field and modeling
176     approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
177     </li></ul>
178    
179     <ul><li>
180 dimitri 1.17 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
181     2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
182     Loading Effects. J. Phys. Oceanogr., 45, 678-689.
183 dimitri 1.1 </li></ul>
184    
185     <ul><li>
186 dimitri 1.24 X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
187     <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
188     Regional ocean forecasting systems and their applications: Design
189 dimitri 1.27 consideration of such a system for the South China Sea.</a>
190     Aquat. Ecosyst. Health Manag., 18, 443-453.
191 dimitri 1.24 </li></ul>
192    
193     <ul><li>
194 dimitri 1.6 J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
195     2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
196     river discharge and river temperature climatology data set for the
197 dimitri 1.25 pan-Arctic region.</a> Ocean Model., 88, 1-15.
198 dimitri 1.1 </li></ul>
199    
200     <ul><li>
201 dimitri 1.27 C. Yan, J. Zhu, and J. Xie, 2015: An ocean data assimilation system in the
202     Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci., 32,
203     1460-1472.
204     </li></ul>
205    
206     <ul><li>
207 dimitri 1.1 V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
208     and the general circulation: Partitioning wind, buoyancy forcing, and
209 dimitri 1.25 irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
210 dimitri 1.1 </li></ul>
211 dimitri 1.27
212     <ul><li>
213     Y. Zhang, D. Jacob, S. Dutkiewicz, H. Amos, M. Long, and E. Sunderland, 2015:
214     Biogeochemical drivers of the fate of riverine mercury discharged to the
215     global and Arctic oceans. Global Biogeochem. Cycles, 29, 854-864.
216     </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22