/[MITgcm]/www.ecco-group.org/ecco_2015_pub.html
ViewVC logotype

Annotation of /www.ecco-group.org/ecco_2015_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.25 - (hide annotations) (download) (as text)
Tue Jan 19 18:51:00 2016 UTC (8 years, 3 months ago) by dimitri
Branch: MAIN
Changes since 1.24: +13 -31 lines
File MIME type: text/html
splitting 2015 and 2016

1 gforget 1.21 <ul><li>
2 dimitri 1.24 M. Balmaseda, M., et al., 2015: The ocean reanalyses intercomparison project
3     (ora-ip). Journal of Operational Oceanography, 8 (sup1), s80-s97.
4 dimitri 1.1 </li></ul>
5    
6     <ul><li>
7     H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
8     K. Bowman, and H. Zhang, 2015:
9     <a href="http://ecco2.org/manuscripts/2015/Brix2015.pdf"> Using
10     Green's Functions to initialize and adjust a global, eddying ocean
11 dimitri 1.25 biogeochemistry general circulation model.</a> Ocean Model., 95, 1-14.
12 dimitri 1.1 </li></ul>
13    
14 dimitri 1.17 <ul><li> M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2015: Determining
15     the origins of advective heat transport variability in the North Atlantic. J.
16     Clim., 18, 3943-3956.
17 dimitri 1.1 </li></ul>
18    
19     <ul><li>
20 dimitri 1.17 R. Chen, G. Flierl, and C. Wunsch, 2015: Quantifying and Interpreting
21     Striations in a Subtropical Gyre: A Spectral Perspective. J. Phys. Oceanogr.,
22     45, 387-406.
23 heimbach 1.15 </li></ul>
24    
25     <ul><li>
26 dimitri 1.5 K. Childers, 2015:
27     <a href="http://ecco2.org/manuscripts/2015/Childers2015.pdf">
28     Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
29     Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
30     </li></ul>
31    
32     <ul><li>
33 dimitri 1.4 P. Duarte, P. Assmy, H. Hop, G. Spreen, S. Gerland, and S. Hudson,
34     2015: <a href="http://ecco2.org/manuscripts/2015/Duarte2015.pdf"> The
35     importance of vertical resolution in sea ice algae production models.</a>
36     J. Mar. Syst., 145, 69-90.
37     </li></ul>
38    
39     <ul><li>
40 dimitri 1.20 I. Fenty, D. Menemenlis, and H. Zhang, 2015:
41     <a href="http://ecco2.org/manuscripts/2015/Fenty2015.pdf">
42 dimitri 1.25 Global Coupled Sea Ice-Ocean State Estimation.</a> Clim. Dyn.,
43     doi:10.1007/s00382-015-2796-6
44 dimitri 1.20 </li></ul>
45    
46     <ul><li>
47 dimitri 1.1 M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2015:
48     <a href="http://ecco2.org/manuscripts/2015/Flexas2015.pdf">
49     Role of tides on the formation of the Antarctic Slope Front at the
50 dimitri 1.19 Weddell-Scotia Confluence.</a> J. Geophys. Res., 120, 3658-3680.
51 dimitri 1.1 </li></ul>
52    
53     <ul><li>
54 dimitri 1.24 G. Forget, D. Ferreira, and X. Liang, 2015: On the observability of
55     turbulent transport rates by argo: supporting evidence from an
56     inversion experiment. Ocean Science, 11, 839-853.
57     </li></ul>
58    
59     <ul><li>
60 dimitri 1.22 G. Forget and R.M. Ponte, 2015:
61     <a href="http://www.sciencedirect.com/science/article/pii/S0079661115001354">
62     The partition of regional sea level variability.</a> Prog. Oceanogr.,
63     137, 173-195.
64 dimitri 1.1 </ul></li>
65    
66     <ul><li>
67 dimitri 1.22 G. Forget, J.M. Campin, P. Heimbach, C.N. Hill, R.M. Ponte, and
68     C. Wunsch, 2015:
69     <a href="http://www.geosci-model-dev.net/8/3071/2015/gmd-8-3071-2015.pdf">
70     ECCO version 4: an integrated framework for non-linear inverse
71     modeling and global ocean state estimation.</a> Geosci. Model Dev., 8,
72     3071-3104.
73     </ul></li>
74    
75     <ul><li>
76     G. Forget, I. Fukumori, P. Heimbach, T. Lee, D. Menemenlis, and
77     R.M. Ponte, 2015:
78     <a href="http://ecco2.org/manuscripts/2015/ECCO_CLIVAR.pdf">
79     Estimating the Circulation and Climate of the Ocean (ECCO): Advancing
80     CLIVAR Science.</a> CLIVAR Exchanges, 67, 41-45.
81 gforget 1.21 </ul></li>
82    
83     <ul><li>
84     McCaffrey, K., B. Fox-Kemper, and G. Forget, 2015: Estimates of Ocean
85     Macro-turbulence: Structure Function and Spectral Slope from Argo Profiling
86     Floats. JPO, 45, 1773-1793.
87 heimbach 1.13 </ul></li>
88    
89     <ul><li>
90 dimitri 1.18 V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin, 2015:
91     <a href="http://www.biogeosciences.net/12/3385/2015/bg-12-3385-2015.html">
92     Modeling the impact of riverine DON removal by marine bacterioplankton on
93     primary production in the Arctic Ocean.</a> Biogeosciences, 12, 3385-3402.
94     </li></ul>
95    
96     <ul><li>
97 dimitri 1.17 I. Fukumori, O. Wang, W. Llovel, I. Fenty, and G. Forget, 2015: A near-uniform
98     fluctuation of ocean bottom pressure and sea level across the deep ocean
99     basins of the Arctic Ocean and the Nordic Seas. Prog. Oceanogr., 134,
100     152-172.
101 heimbach 1.15 </ul></li>
102    
103     <ul><li>
104 dimitri 1.7 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan,
105     2015: <a href="http://ecco2.org/manuscripts/2015/Halkides2015.pdf">
106     Quantifying the processes controlling intraseasonal mixed-layer temperature
107 dimitri 1.12 variability in the tropical Indian Ocean.</a> J. Geophys. Res., 120, 692-715.
108 dimitri 1.1 </li></ul>
109    
110     <ul><li>
111     D. Halpern, D. Menemenlis, and X. Wang,
112     2015: <a href="http://ecco2.org/manuscripts/2015/Halpern2015.pdf">
113     Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
114     Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
115     Tech., 32, 131-143.
116     </li></ul>
117    
118     <ul><li>
119 dimitri 1.17 P. Heimbach, 2015: Application of derivative code in climate modeling.
120 heimbach 1.13 in: N. Gauger, M. Giles, M. Gunzburger, and U. Naumann (eds.):
121     Adjoint Methods in Computational Science, Engineering, and Finance.
122 dimitri 1.17 Dagstuhl Reports, 4, 14-16.
123 dimitri 1.2 </li></ul>
124    
125     <ul><li>
126 dimitri 1.1 X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2015:
127 gforget 1.21 Vertical redistribution of oceanic heat. 28, 3821-3833.
128 dimitri 1.1 </ul></li>
129    
130     <ul><li>
131 dimitri 1.9 L. Ott, S. Pawson, G. Collatz, W. Gregg, D. Menemenlis, H. Brix, C. Rousseaux,
132     K. Bowman, J. Liu, A. Eldering, M. Gunson, and S. Kawa,
133 dimitri 1.6 2015: <a href="http://ecco2.org/manuscripts/2015/Ott2015.pdf"> Assessing the
134 dimitri 1.9 magnitude of CO2 flux uncertainty in atmospheric CO2 records using products
135     from NASA's Carbon Monitoring Flux Pilot Project.</a> J. Geophys. Res., 120,
136 dimitri 1.10 734-765.
137 dimitri 1.1 </li></ul>
138    
139     <ul><li>
140     C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2015: Vertical
141 dimitri 1.3 structure of ocean pressure fluctuations with application to
142     satellite-gravimetric observations. J. Atmos. Oce. Tech., in press.
143 dimitri 1.1 </li></ul>
144    
145     <ul><li>
146 dimitri 1.24 C. Piecuch, P. Heimbach, R.M. Ponte, and G. Forget, 2015: Sensitivity
147     of contemporary sea level trends in a global ocean state estimate to effects
148 dimitri 1.25 of geothermal fluxes, Ocean Model., 96, 214-220.
149 dimitri 1.1 </li></ul>
150    
151     <ul><li>
152 dimitri 1.17 T. Van der Stocken, 2015:
153     <a href="http://ecco2.org/manuscripts/2015/Stocken2015.pdf"> Biological and
154     environmental drivers of mangrove propagule dispersal: A field and modeling
155 dimitri 1.24 approach.</a> Ph.D. Thesis, Vrije Universiteit Brussel and the Universite Libre de Bruxelles.
156 dimitri 1.17 </li></ul>
157    
158     <ul><li>
159     A. Storto, and 36 others, 2015: Steric sea level variability (1993-2010) in an
160 dimitri 1.25 ensemble of ocean reanalyses and objective analyses. Clim. Dyn.,
161 dimitri 1.17 doi:10.1007/s00382-015-2554-9
162 heimbach 1.14 </li></ul>
163    
164     <ul><li>
165 gforget 1.21 Toyoda, T., and 32 others, 2015: Interannual-decadal variability of wintertime
166 dimitri 1.25 mixed layer depths in the north pacific detected by an ensemble of ocean
167     syntheses. Clim. Dyn., doi:10.1007/s00382-015-2762-3
168 gforget 1.21 </li></ul>
169    
170     <ul><li>
171 dimitri 1.25 T. Toyoda, and 32 others, 2015: Intercomparison and validation of the
172     mixed layer depth fields of global ocean syntheses. Clim. Dyn.,
173     doi:10.1007/s00382-015-2637-7
174 heimbach 1.15 </li></ul>
175    
176     <ul><li>
177 dimitri 1.17 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J.M. Campin, and J. Davis,
178     2015: Dynamic Adjustment of the Ocean Circulation to Self-Attraction and
179     Loading Effects. J. Phys. Oceanogr., 45, 678-689.
180 dimitri 1.1 </li></ul>
181    
182     <ul><li>
183 dimitri 1.24 X. Wang, L. Zhao, Z. Li, and D. Menemenlis, 2015:
184     <a href="http://ecco2.org/manuscripts/2015/Wang2015.pdf">
185     Regional ocean forecasting systems and their applications: Design
186     consideration of such a system for the South China Sea.</a> Aquatic
187 dimitri 1.25 Ecosystem Health & Management, 18, 443-453.
188 dimitri 1.24 </li></ul>
189    
190     <ul><li>
191 dimitri 1.6 J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis,
192     2015: <a href="http://ecco2.org/manuscripts/2015/Whitefield2015.pdf"> A new
193     river discharge and river temperature climatology data set for the
194 dimitri 1.25 pan-Arctic region.</a> Ocean Model., 88, 1-15.
195 dimitri 1.1 </li></ul>
196    
197     <ul><li>
198     V. Zemskova, B. White, and A. Scotti, 2015: Available potential energy
199     and the general circulation: Partitioning wind, buoyancy forcing, and
200 dimitri 1.25 irreversible mixing. J. Phys. Oceanogr., 45, 1510-1531.
201 dimitri 1.1 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22