/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.23 - (show annotations) (download) (as text)
Sun Dec 21 14:21:23 2014 UTC (9 years, 3 months ago) by dimitri
Branch: MAIN
Changes since 1.22: +28 -21 lines
File MIME type: text/html
adding Jonathan Whitefield's article

1 <ul><li>
2 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy
3 mixing in a circumpolar channel. Ocean Modelling, submitted.
4 </li></ul>
5
6 <ul><li>
7 M. Azaneu, R. Kerr, and M. Mata,
8 2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9 Assessment of the ECCO2 reanalysis on the representation of Antarctic
10 Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11 </li></ul>
12
13 <ul><li>
14 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15 K. Bowman, and H. Zhang, 2014:
16 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17 Green's Functions to initialize and adjust a global, eddying ocean
18 biogeochemistry general circulation model.</a> Ocean Modelling,
19 submitted.
20 </li></ul>
21
22 <ul><li>
23 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24 Low-frequency SST and upper-ocean heat content variability in the North
25 Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
26 </li></ul>
27
28 <ul><li>
29 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30 origins of advective heat transport variability in the North Atlantic. J.
31 Clim., in revision.
32 </li></ul>
33
34 <ul><li>
35 A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36 atmospheric reanalysis products for the Arctic Ocean and implications
37 for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38 </li></ul>
39
40 <ul><li>
41 R. Chen, G. Flerl, and C. Wunsch, 2014:
42 <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43 description of local and nonlocal eddy-mean flow interaction in a
44 global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45 2336-2352.
46 </li></ul>
47
48 <ul><li>
49 H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
50 Conditions in the Last Glacial Maximum Atlantic. J. Clim., 27, 807–823.
51 </ul></li>
52
53 <ul><li>
54 G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
55 Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
56 states. Ocean Modelling, 73, 76-107.
57 </li></ul>
58
59 <ul><li>
60 G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
61 M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
62 Team Annual Report on Progress and Priorities. 162 pp. <a
63 href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
64 US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
65 </ul></li>
66
67 <ul><li>
68 V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
69 melt rates in a general circulation model: velocity-dependent transfer and the
70 role of friction. J. Geophys. Res., 119, 1765-1790.
71 </ul></li>
72
73 <ul><li>
74 B. Dushaw, 2014:
75 <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
76 Assessing the horizontal refraction of ocean acoustic tomography
77 signals using high-resolution ocean state estimates.</a>
78 Acoust. Soc. Am., 136, 122.
79 </li></ul>
80
81 <ul><li>
82 B. Dushaw and D. Menemenlis, 2014:
83 <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
84 Antipodal acoustic thermometry: 1960, 2004.</a>
85 Deep-Sea Res. I, 86, 1-20.
86 </li></ul>
87
88 <ul><li>
89 M.M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
90 <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
91 Role of tides on the formation of the Antarctic Slope Front at the
92 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
93 </li></ul>
94
95 <ul><li>
96 G. Forget and R.M. Ponte, 2014: The partition of regional sea level
97 variability. Prog. Oceanogr., submitted.
98 </ul></li>
99
100 <ul><li>
101 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
102 Quantifying the processes controlling intraseasonal mixed-layer
103 temperature variability in the tropical Indian
104 Ocean. J. Geophys. Res., in press.
105 </li></ul>
106
107 <ul><li>
108 D. Halpern, D. Menemenlis, and X. Wang,
109 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
110 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
111 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
112 Tech., in press.
113 </li></ul>
114
115 <ul><li>
116 P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
117 International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
118 <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
119 </ul></li>
120
121 <ul><li>
122 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
123 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
124 (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
125 </li></ul>
126
127 <ul><li>
128 X. Liang, C. Wunsch, P. Heimbach, and G. Forget, 2014:
129 Vertical redistribution of oceanic heat. Submitted.
130 </ul></li>
131
132 <ul><li>
133 J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
134 J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
135 2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
136 Carbon monitoring system flux estimation and attribution: Impact of
137 ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
138 sources and sinks.</a> Tellus B, 66, 22486.
139 </li></ul>
140
141 <ul><li>
142 M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
143 <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
144 Ocean state estimation from hydrography and velocity observations
145 during EIFEX with a regional biogeochemical ocean circulation
146 model.</a> J. Mar. Syst., 129, 437-451.
147 </li></ul>
148
149 <ul><li>
150 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
151 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
152 2014: Quantifying the observability of CO2 flux uncertainty in
153 atmospheric CO2 records using products from NASA's Carbon Monitoring
154 Flux Pilot Project. J. Geophys. Res., in press.
155 </li></ul>
156
157 <ul><li>
158 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
159 structure of ocean pressure fluctuations with application
160 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
161 </li></ul>
162
163 <ul><li>
164 C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
165 level change. J. Clim., 27, 824-834.
166 </li></ul>
167
168 <ul><li>
169 R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
170 in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
171 44, 1456-1465.
172 </li></ul>
173
174 <ul><li>
175 R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
176 of periodic intermediary flows on submarine melting of a Greenland glacier.
177 J. Geophys. Res., 119, 7078-7098.
178 </ul></li>
179
180 <ul><li>
181 H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
182 M. Schodlok, and A. Khazendar,
183 2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
184 Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
185 to climate forcing for the next 50 years.</a> The Cryosphere, 8,
186 1699-1710.
187 </li></ul>
188
189 <ul><li>
190 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice
191 deformation in a coupled ocean-sea ice model and in satellite remote
192 sensing data. J. Geophys. Res., submitted.
193 </li></ul>
194
195 <ul><li>
196 N. Vinogradova, R. Ponte, I. Fukumori, and O. Wang, 2014:
197 Estimating satellite salinity errors for assimilation of Aquarius and SMOS
198 data into climate models. J. Geophys. Res., 119.
199 </li></ul>
200
201 <ul><li>
202 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
203 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
204 self-attraction and loading effects, J. Phys. Oceanogr., in revision.
205 </li></ul>
206
207 <ul><li>
208 J. Whitefield, P. Winsor, J. McClelland, and D. Menemenlis, 2014: A new river
209 discharge and river temperature data set for the pan-Arctic region. Ocean
210 Modelling, in press.
211 </li></ul>
212
213 <ul><li>
214 C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
215 ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
216 </li></ul>
217
218 <ul><li>
219 C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
220 Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
221 </li></ul>
222
223 <ul><li>
224 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
225 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
226 vertical mixing using seasonally averaged observations from the
227 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
228 </li></ul>
229
230 <ul><li>
231 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
232 and the general circulation: Partitioning wind, buoyancy forcing, and
233 irreversible mixing. J. Phys. Oceanogr., submitted.
234 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22