/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (show annotations) (download) (as text)
Wed Nov 26 20:39:46 2014 UTC (9 years, 4 months ago) by dimitri
Branch: MAIN
Changes since 1.21: +1 -1 lines
File MIME type: text/html
Daria's paper has been accepted.

1 <ul><li>
2 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy
3 mixing in a circumpolar channel. Ocean Modelling, submitted.
4 </li></ul>
5
6 <ul><li>
7 M. Azaneu, R. Kerr, and M. Mata,
8 2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9 Assessment of the ECCO2 reanalysis on the representation of Antarctic
10 Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11 </li></ul>
12
13 <ul><li>
14 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15 K. Bowman, and H. Zhang, 2014:
16 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17 Green's Functions to initialize and adjust a global, eddying ocean
18 biogeochemistry general circulation model.</a> Ocean Modelling,
19 submitted.
20 </li></ul>
21
22 <ul><li>
23 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
24 Low-frequency SST and upper-ocean heat content variability in the North
25 Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
26 </li></ul>
27
28 <ul><li>
29 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
30 origins of advective heat transport variability in the North Atlantic. J.
31 Clim., in revision.
32 </li></ul>
33
34 <ul><li>
35 A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
36 atmospheric reanalysis products for the Arctic Ocean and implications
37 for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
38 </li></ul>
39
40 <ul><li>
41 R. Chen, G. Flerl, and C. Wunsch, 2014:
42 <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
43 description of local and nonlocal eddy-mean flow interaction in a
44 global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
45 2336-2352.
46 </li></ul>
47
48 <ul><li>
49 Dail, H. and C. Wunsch, 2014:
50 Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.
51 J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1
52 </ul></li>
53
54 <ul><li>
55 G. Danabasoglu, et al., 2014: North Atlantic simulations in
56 Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
57 I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
58 </li></ul>
59
60 <ul><li>
61 Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:
62 2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.
63 <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
64 </ul></li>
65
66 <ul><li>
67 Dansereau, V., P. Heimbach, and M. Losch, 2014:
68 Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.
69 J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.
70 </ul></li>
71
72 <ul><li>
73 B. Dushaw, 2014:
74 <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
75 Assessing the horizontal refraction of ocean acoustic tomography
76 signals using high-resolution ocean state estimates.</a>
77 Acoust. Soc. Am., 136, 122.
78 </li></ul>
79
80 <ul><li>
81 B. Dushaw and D. Menemenlis, 2014:
82 <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
83 Antipodal acoustic thermometry: 1960, 2004.</a>
84 Deep-Sea Res. I, 86, 1-20.
85 </li></ul>
86
87 <ul><li>
88 M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
89 <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
90 Role of tides on the formation of the Antarctic Slope Front at the
91 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
92 </li></ul>
93
94 <ul><li>
95 Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.
96 Prog. Oceanogr., submitted.
97 </ul></li>
98
99 <ul><li>
100 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
101 Quantifying the processes controlling intraseasonal mixed-layer
102 temperature variability in the tropical Indian
103 Ocean. J. Geophys. Res., in press.
104 </li></ul>
105
106 <ul><li>
107 D. Halpern, D. Menemenlis, and X. Wang,
108 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
109 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
110 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
111 Tech., in press.
112 </li></ul>
113
114 <ul><li>
115 Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:
116 International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
117 <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
118 </ul></li>
119
120 <ul><li>
121 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
122 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
123 (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
124 </li></ul>
125
126 <ul><li>
127 Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:
128 Vertical redistribution of oceanic heat. Submitted.
129 </ul></li>
130
131 <ul><li>
132 J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
133 J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
134 2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
135 Carbon monitoring system flux estimation and attribution: Impact of
136 ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
137 sources and sinks.</a> Tellus B, 66, 22486.
138 </li></ul>
139
140 <ul><li>
141 M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
142 <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
143 Ocean state estimation from hydrography and velocity observations
144 during EIFEX with a regional biogeochemical ocean circulation
145 model.</a> J. Mar. Syst., 129, 437-451.
146 </li></ul>
147
148 <ul><li>
149 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
150 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
151 2014: Quantifying the observability of CO2 flux uncertainty in
152 atmospheric CO2 records using products from NASA's Carbon Monitoring
153 Flux Pilot Project. J. Geophys. Res., submitted.
154 </li></ul>
155
156 <ul><li>
157 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
158 structure of ocean pressure fluctuations with application
159 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
160 </li></ul>
161
162 <ul><li>
163 C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
164 level change. J. Clim., 27, 824-834.
165 </li></ul>
166
167 <ul><li>
168 R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
169 in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
170 44, 1456-1465.
171 </li></ul>
172
173 <ul><li>
174 Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:
175 Impact of periodic intermediary flows on submarine melting of a Greenland glacier.
176 J. Geophys. Res., 119(10), 7078-7098, doi:10.1002/2014JC009953.
177 </ul></li>
178
179 <ul><li>
180 H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
181 M. Schodlok, and A. Khazendar,
182 2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
183 Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
184 to climate forcing for the next 50 years.</a> The Cryosphere, 8,
185 1699-1710.
186 </li></ul>
187
188 <ul><li>
189 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice
190 deformation in a coupled ocean-sea ice model and in satellite remote
191 sensing data. J. Geophys. Res., submitted.
192 </li></ul>
193
194 <ul><li>
195 N. Vinogradova, R. Ponte, I. Fukumori, and O. Wang, 2014:
196 Estimating satellite salinity errors for assimilation of Aquarius and SMOS
197 data into climate models. J. Geophys. Res., 119.
198 </li></ul>
199
200 <ul><li>
201 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
202 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
203 self-attraction and loading effects, J. Phys. Oceanogr., in revision.
204 </li></ul>
205
206 <ul><li>
207 C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
208 ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
209 </li></ul>
210
211 <ul><li>
212 C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
213 Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
214 </li></ul>
215
216 <ul><li>
217 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
218 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
219 vertical mixing using seasonally averaged observations from the
220 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
221 </li></ul>
222
223 <ul><li>
224 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
225 and the general circulation: Partitioning wind, buoyancy forcing, and
226 irreversible mixing. J. Phys. Oceanogr., submitted.
227 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22