/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Contents of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.20 - (show annotations) (download) (as text)
Mon Nov 24 20:02:20 2014 UTC (9 years, 4 months ago) by heimbach
Branch: MAIN
Changes since 1.19: +51 -5 lines
File MIME type: text/html
Update refs.

1 <ul><li>
2 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy
3 mixing in a circumpolar channel. Ocean Modelling, submitted.
4 </li></ul>
5
6 <ul><li>
7 M. Azaneu, R. Kerr, and M. Mata,
8 2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
9 Assessment of the ECCO2 reanalysis on the representation of Antarctic
10 Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
11 </li></ul>
12
13 <ul><li>
14 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
15 K. Bowman, and H. Zhang, 2014:
16 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
17 Green's Functions to initialize and adjust a global, eddying ocean
18 biogeochemistry general circulation model.</a> Ocean Modelling,
19 submitted.
20 </li></ul>
21
22 <ul><li>
23 Buckley, M., R.M. Ponte, G. Forget, and P. Heimbach, 2014:
24 Determining the origins of advective heat transport variability in the North Atlantic.
25 J. Clim., submitted.
26 </li></ul>
27
28 <ul><li>
29 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
30 Low-frequency SST and upper-ocean heat content variability in the North
31 Atlantic. J. Clim., 27, 4996-5018, doi:10.1175/JCLI-D-13-00316.1.
32 </li></ul>
33
34 <ul><li>
35 M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014: Determining the
36 origins of advective heat transport variability in the North Atlantic. J.
37 Clim., in revision.
38 </li></ul>
39
40 <ul><li>
41 A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
42 atmospheric reanalysis products for the Arctic Ocean and implications
43 for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
44 </li></ul>
45
46 <ul><li>
47 R. Chen, G. Flerl, and C. Wunsch, 2014:
48 <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
49 description of local and nonlocal eddy-mean flow interaction in a
50 global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
51 2336-2352.
52 </li></ul>
53
54 <ul><li>
55 Dail, H. and C. Wunsch, 2014:
56 Dynamical Reconstruction of Upper-Ocean Conditions in the Last Glacial Maximum Atlantic.
57 J. Clim., 27(2), 807–823. doi:10.1175/JCLI-D-13-00211.1
58 </ul></li>
59
60 <ul><li>
61 G. Danabasoglu, et al., 2014: North Atlantic simulations in
62 Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
63 I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
64 </li></ul>
65
66 <ul><li>
67 Danabasoglu, G., R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek, M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014:
68 2013 US AMOC Science Team Annual Report on Progress and Priorities. 162 pp.
69 <a href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
70 </ul></li>
71
72 <ul><li>
73 Dansereau, V., P. Heimbach, and M. Losch, 2014:
74 Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction.
75 J. Geophys. Res., 119(3), 1765-1790, doi:10.1002/2013JC008846.
76 </ul></li>
77
78 <ul><li>
79 B. Dushaw, 2014:
80 <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
81 Assessing the horizontal refraction of ocean acoustic tomography
82 signals using high-resolution ocean state estimates.</a>
83 Acoust. Soc. Am., 136, 122.
84 </li></ul>
85
86 <ul><li>
87 B. Dushaw and D. Menemenlis, 2014:
88 <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
89 Antipodal acoustic thermometry: 1960, 2004.</a>
90 Deep-Sea Res. I, 86, 1-20.
91 </li></ul>
92
93 <ul><li>
94 M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
95 <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
96 Role of tides on the formation of the Antarctic Slope Front at the
97 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
98 </li></ul>
99
100 <ul><li>
101 Forget, G. and R.M. Ponte, 2014: The partition of regional sea level variability.
102 Prog. Oceanogr., submitted.
103 </ul></li>
104
105 <ul><li>
106 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
107 Quantifying the processes controlling intraseasonal mixed-layer
108 temperature variability in the tropical Indian
109 Ocean. J. Geophys. Res., revised.
110 </li></ul>
111
112 <ul><li>
113 D. Halpern, D. Menemenlis, and X. Wang,
114 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
115 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
116 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
117 Tech., in press.
118 </li></ul>
119
120 <ul><li>
121 Heimbach, P., F. Straneo, O. Sergienko, and G. Hamilton, 2014:
122 International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
123 <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
124 </ul></li>
125
126 <ul><li>
127 A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
128 Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
129 (Special Section on Planet Earth and Big Data), 36(5), S267–S295, doi:10.1137/130925311.
130 </li></ul>
131
132 <ul><li>
133 Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2014:
134 Vertical redistribution of oceanic heat. Submitted.
135 </ul></li>
136
137 <ul><li>
138 J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
139 J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
140 2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
141 Carbon monitoring system flux estimation and attribution: Impact of
142 ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
143 sources and sinks.</a> Tellus B, 66, 22486.
144 </li></ul>
145
146 <ul><li>
147 M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
148 <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
149 Ocean state estimation from hydrography and velocity observations
150 during EIFEX with a regional biogeochemical ocean circulation
151 model.</a> J. Mar. Syst., 129, 437-451.
152 </li></ul>
153
154 <ul><li>
155 L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
156 C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
157 2014: Quantifying the observability of CO2 flux uncertainty in
158 atmospheric CO2 records using products from NASA's Carbon Monitoring
159 Flux Pilot Project. J. Geophys. Res., submitted.
160 </li></ul>
161
162 <ul><li>
163 C. Piecuch, I. Fukumori, R. Ponte, and O. Wang, 2014: Vertical
164 structure of ocean pressure fluctuations with application
165 to satellite-gravimetric observations. J. Atmos. Oce. Tech., in revision.
166 </li></ul>
167
168 <ul><li>
169 C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
170 level change. J. Clim., 27, 824-834.
171 </li></ul>
172
173 <ul><li>
174 R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
175 in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
176 44, 1456-1465.
177 </li></ul>
178
179 <ul><li>
180 Sciascia, R., C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014:
181 Impact of periodic intermediary flows on submarine melting of a Greenland glacier.
182 J. Geophys. Res., in press, doi:10.1002/2014JC009953.
183 </ul></li>
184
185 <ul><li>
186 H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
187 M. Schodlok, and A. Khazendar,
188 2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
189 Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
190 to climate forcing for the next 50 years.</a> The Cryosphere, 8,
191 1699-1710.
192 </li></ul>
193
194 <ul><li>
195 G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice
196 deformation in a coupled ocean-sea ice model and in satellite remote
197 sensing data. J. Geophys. Res., submitted.
198 </li></ul>
199
200 <ul><li>
201 N. Vinogradova, R. Ponte, I. Fukumori, and O. Wang, 2014:
202 Estimating satellite salinity errors for assimilation of Aquarius and SMOS
203 data into climate models. J. Geophys. Res., 119.
204 </li></ul>
205
206 <ul><li>
207 N. Vinogradova, R. Ponte, K. Quinn, M. Tamisiea, J. Campin,
208 and J. Davis, 2014: Dynamic adjustment of the ocean circulation to
209 self-attraction and loading effects, J. Phys. Oceanogr., in revision.
210 </li></ul>
211
212 <ul><li>
213 C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
214 ocean variability, J. Phys. Oceanogr., 44, 944-966, doi:10.1175/JPO-D-13-0113.1.
215 </li></ul>
216
217 <ul><li>
218 C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
219 Abyssal Ocean. J. Phys. Oceanogr., 44(8), 2013-2030, doi:10.1175/JPO-D-13-096.1.
220 </li></ul>
221
222 <ul><li>
223 S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
224 I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
225 vertical mixing using seasonally averaged observations from the
226 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
227 </li></ul>
228
229 <ul><li>
230 V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
231 and the general circulation: Partitioning wind, buoyancy forcing, and
232 irreversible mixing. J. Phys. Oceanogr., submitted.
233 </li></ul>

  ViewVC Help
Powered by ViewVC 1.1.22