/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by dimitri, Fri Jan 31 22:06:18 2014 UTC revision 1.16 by dimitri, Mon Nov 3 18:11:29 2014 UTC
# Line 4  mixing in a circumpolar channel. Ocean M Line 4  mixing in a circumpolar channel. Ocean M
4  </li></ul>  </li></ul>
5    
6  <ul><li>  <ul><li>
7  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,
8  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  K. Bowman, and H. Zhang, 2014:
9  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using
10    Green's Functions to initialize and adjust a global, eddying ocean
11    biogeochemistry general circulation model.</a> Ocean Modelling,
12  submitted.  submitted.
13  </li></ul>  </li></ul>
14    
# Line 17  Atlantic. J. Clim., in revision. Line 19  Atlantic. J. Clim., in revision.
19  </li></ul>  </li></ul>
20    
21  <ul><li>  <ul><li>
22  Chaudhuri, A. H., R. M. Ponte, and A. T. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
23    atmospheric reanalysis products for the Arctic Ocean and implications
24    for uncertainties in air-sea fluxes, Journal of Climate, in revision.
25  </li></ul>  </li></ul>
26    
27  <ul><li>  <ul><li>
28  Danabasoglu, G., et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.  G. Danabasoglu, et al., 2014: North Atlantic simulations in
29    Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part
30    I: Mean states. Ocean Modelling, 73, 76-107.
31  </li></ul>  </li></ul>
32    
33  <ul><li>  <ul><li>
34  Dansereau, V., P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res., accepted.  B. Dushaw, 2014:
35    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
36    Assessing the horizontal refraction of ocean acoustic tomography
37    signals using high-resolution ocean state estimates.</a>
38    Acoust. Soc. Am., 136, 122.
39  </li></ul>  </li></ul>
40    
41  <ul><li>  <ul><li>
# Line 36  Deep-Sea Res. I, 86, 1-20. Line 46  Deep-Sea Res. I, 86, 1-20.
46  </li></ul>  </li></ul>
47    
48  <ul><li>  <ul><li>
49    M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:
50    <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">
51    Role of tides on the formation of the Antarctic Slope Front at the
52    Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.
53    </li></ul>
54    
55    <ul><li>
56    D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:
57    Quantifying the processes controlling intraseasonal mixed-layer
58    temperature variability in the tropical Indian
59    Ocean. J. Geophys. Res., revised.
60    </li></ul>
61    
62    <ul><li>
63    D. Halpern, D. Menemenlis, and X. Wang,
64    2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">
65    Impact of data assimilation on ECCO2 Equatorial Undercurrent and North
66    Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean
67    Tech., in press.
68    </li></ul>
69    
70    <ul><li>
71  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
72  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
73  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), submitted.
74  </li></ul>  </li></ul>
75    
76  <ul><li>  <ul><li>
77  M. Morlighem, E. Rignot, J. Mouginot, X. Wu, H. Seroussi, E. Larour, and  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
78  J. Paden, 2014: Bed topography of Russell Glacier, Greenland, inferred from  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
79  mass conservation using Operation IceBridge data. J. Glaciol., submitted.  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
80    Carbon monitoring system flux estimation and attribution: Impact of
81    ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
82    sources and sinks.</a> Tellus B, 66, 22486.
83  </li></ul>  </li></ul>
84    
85  <ul><li>  <ul><li>
86  M. Morlighem, H. Seroussi, E. Larour and E. Rignot, 2014: Inversion of basal  M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
87  friction in Antarctica using exact and incomplete adjoints of a higher-order  <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
88  model, J. Geophys. Res., submitted.  Ocean state estimation from hydrography and velocity observations
89    during EIFEX with a regional biogeochemical ocean circulation
90    model.</a> J. Mar. Syst., 129, 437-451.
91  </li></ul>  </li></ul>
92    
93  <ul><li>  <ul><li>
94  Piecuch, C. G., and R. M. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,
95    C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,
96    2014: Quantifying the observability of CO2 flux uncertainty in
97    atmospheric CO2 records using products from NASA's Carbon Monitoring
98    Flux Pilot Project. J. Geophys. Res., submitted.
99    </li></ul>
100    
101    <ul><li>
102    C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
103    level change.  J. Clim., in press.
104  </li></ul>  </li></ul>
105    
106  <ul><li>  <ul><li>
# Line 65  sensing data. J. Geophys. Res., submitte Line 111  sensing data. J. Geophys. Res., submitte
111    
112  <ul><li>  <ul><li>
113  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
114  ocean variability, submitted.  ocean variability, J. Phys. Oceanogr., 44, 944-966.
115  </li></ul>  </li></ul>
116    
117  <ul><li>  <ul><li>
118  Wunsch, C., G. Forget, and P. Heimbach, 2013: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., submitted.  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
119    Abyssal Ocean. J. Phys. Oceanogr., in press.
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  Zedler, S., C.S. Jackson, F. Yao, P. Heimbach, A. Koehl, R.B. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., submitted.  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and
124    I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent
125    vertical mixing using seasonally averaged observations from the
126    TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.
127  </li></ul>  </li></ul>
128    
129    <ul><li>
130    V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy
131    and the general circulation: Partitioning wind, buoyancy forcing, and
132    irreversible mixing. J. Phys. Oceanogr., submitted.
133    </li></ul>

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22