/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by dimitri, Fri Oct 3 15:51:43 2014 UTC revision 1.28 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://www.ocean-sci.net/10/923/2014/os-10-923-2014.html">
4  </li></ul>  Assessment of the representation of Antarctic Bottom Water properties in the
5    ECCO2 reanalysis.</a> Ocean Sci., 10, 923-946.
 <ul><li>  
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, Journal of Climate, in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18    </li></ul>
19    
20    <ul><li>
21    R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26    </li></ul>
27    
28    <ul><li>
29    K. Childers, 2014:
30    <a href="http://ecco2.org/manuscripts/2015/Childers2014.pdf">
31    Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
32    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
33    </li></ul>
34    
35    <ul><li>
36    H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
37    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
38    </ul></li>
39    
40    <ul><li>
41    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
42    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
43    states. Ocean Modelling, 73, 76-107.
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  G. Danabasoglu, et al., 2014: North Atlantic simulations in  G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
48  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
49  I: Mean states. Ocean Modelling, 73, 76-107.  Team Annual Report on Progress and Priorities. 162 pp. <a
50    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
51    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
52    </ul></li>
53    
54    <ul><li>
55    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
56    melt rates in a general circulation model: velocity-dependent transfer and the
57    role of friction.  J. Geophys. Res., 119, 1765-1790.
58    </ul></li>
59    
60    <ul><li>
61    T. Dotto, R. Kerr, M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt,
62    2014: <a href="http://www.ocean-sci.net/10/523/2014/os-10-523-2014.html">
63    Assessment of the structure and variability of Weddell Sea water masses in
64    distinct ocean reanalysis products.</a> Ocean Sci., 10, 523-546.
65  </li></ul>  </li></ul>
66    
67  <ul><li>  <ul><li>
# Line 46  Deep-Sea Res. I, 86, 1-20. Line 80  Deep-Sea Res. I, 86, 1-20.
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  S. Gao, T. Qu, and X. Nie, 2014: Mixed layer salinity budget in the tropical
84  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  Pacific Ocean estimated by a global GCM. J. Geophys. Res., 119, 8255-8270.
 Role of tides on the formation of the Antarctic Slope Front at the  
 Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88  D. Halpern, D. Menemenlis, and X. Wang,  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
89  2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
90  Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
91  Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  </ul></li>
 Tech., in press.  
 </li></ul>  
92    
93  <ul><li>  <ul><li>
94  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
95  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
96  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
97  </li></ul>  </li></ul>
98    
99  <ul><li>  <ul><li>
100  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
101  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
102  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
103  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
104  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 84  model.</a> J. Mar. Syst., 129, 437-451. Line 114  model.</a> J. Mar. Syst., 129, 437-451.
114  </li></ul>  </li></ul>
115    
116  <ul><li>  <ul><li>
117  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  C. Piecuch, I. Fukumori, R. Ponte and O. Wang, 2014: Vertical Structure of
118  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  Ocean Pressure Variations with Application to Satellite-Gravimetric
119  2014: Quantifying the observability of CO2 flux uncertainty in  Observations. Journal of Atmospheric and Oceanic Technology, 32, 603-613.
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
124  level change.  J. Clim., in press.  level change.  J. Clim., 27, 824-834.
125  </li></ul>  </li></ul>
126    
127  <ul><li>  <ul><li>
128  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
129  deformation in a coupled ocean-sea ice model and in satellite remote  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
130  sensing data. J. Geophys. Res., submitted.  44, 1456-1465.
131  </li></ul>  </li></ul>
132    
133  <ul><li>  <ul><li>
134  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
135  ocean variability, J. Phys. Oceanogr., 44, 944-966.  of periodic intermediary flows on submarine melting of a Greenland glacier.
136    J. Geophys. Res., 119, 7078-7098.
137    </ul></li>
138    
139    <ul><li>
140    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141    M. Schodlok, and A. Khazendar,
142    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
143    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
144    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
145    1699-1710.
146  </li></ul>  </li></ul>
147    
148  <ul><li>  <ul><li>
149  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  S. Tett, T. Sherwin, A. Shravat, and O. Browne, 2014: How Much Has the North
150  Abyssal Ocean. J. Phys. Oceanogr., in press.  Atlantic Ocean Overturning Circulation Changed in the Last 50 Years? Journal
151    of Climate, 27, 6325-6342.
152    </ul></li>
153    
154    <ul><li>
155    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
156    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157    data into climate models. J. Geophys. Res., 119, 4732-4744.
158    </li></ul>
159    
160    <ul><li>
161    B. Webber, A. Matthews, K. Heywood, J. Kaiser and S. Schmidtko, 2014:
162    Seaglider observations of equatorial Indian Ocean Rossby waves associated with
163    the Madden-Julian Oscillation. J. Geophys. Res., 119, 3714-3731.
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
168  I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  ocean variability, J. Phys. Oceanogr., 44, 944-966.
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
169  </li></ul>  </li></ul>
170    
171  <ul><li>  <ul><li>
172  V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
173  and the general circulation: Partitioning wind, buoyancy forcing, and  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 irreversible mixing. J. Phys. Oceanogr., submitted.  
174  </li></ul>  </li></ul>

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22