/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by dimitri, Mon Dec 30 19:03:15 2013 UTC revision 1.28 by dimitri, Fri Jul 8 23:25:29 2016 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2013: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://www.ocean-sci.net/10/923/2014/os-10-923-2014.html">
4    Assessment of the representation of Antarctic Bottom Water properties in the
5    ECCO2 reanalysis.</a> Ocean Sci., 10, 923-946.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  and H. Zhang, 2013: Using Green's Functions to initialize and adjust a global,  Low-frequency SST and upper-ocean heat content variability in the North
11  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Atlantic. J. Clim., 27, 4996-5018.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2013:  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  Low-frequency SST and upper-ocean heat content variability in the North  atmospheric reanalysis products for the Arctic Ocean and implications
17  Atlantic. J. Clim., submitted.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18    </li></ul>
19    
20    <ul><li>
21    R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  G. Danabasoglu, et al., 2013:  K. Childers, 2014:
30  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states.  <a href="http://ecco2.org/manuscripts/2015/Childers2014.pdf">
31  Ocean Modelling, submitted.  Circulation and Transport Across the Iceland Faroes Shetland Ridge.</a>
32    Ph.D. Thesis, Marine and Atmospheric Science, Stony Brook University, NY.
33    </li></ul>
34    
35    <ul><li>
36    H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
37    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
38    </ul></li>
39    
40    <ul><li>
41    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
42    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
43    states. Ocean Modelling, 73, 76-107.
44  </li></ul>  </li></ul>
45    
46  <ul><li>  <ul><li>
47  V. Dansereau, P. Heimbach, and M. Losch, 2013: Simulation of sub-ice shelf  G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
48    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
49    Team Annual Report on Progress and Priorities. 162 pp. <a
50    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
51    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
52    </ul></li>
53    
54    <ul><li>
55    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
56  melt rates in a general circulation model: velocity-dependent transfer and the  melt rates in a general circulation model: velocity-dependent transfer and the
57  role of friction. J. Geophys. Res., submitted.  role of friction.  J. Geophys. Res., 119, 1765-1790.
58    </ul></li>
59    
60    <ul><li>
61    T. Dotto, R. Kerr, M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt,
62    2014: <a href="http://www.ocean-sci.net/10/523/2014/os-10-523-2014.html">
63    Assessment of the structure and variability of Weddell Sea water masses in
64    distinct ocean reanalysis products.</a> Ocean Sci., 10, 523-546.
65    </li></ul>
66    
67    <ul><li>
68    B. Dushaw, 2014:
69    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
70    Assessing the horizontal refraction of ocean acoustic tomography
71    signals using high-resolution ocean state estimates.</a>
72    Acoust. Soc. Am., 136, 122.
73    </li></ul>
74    
75    <ul><li>
76    B. Dushaw and D. Menemenlis, 2014:
77    <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
78    Antipodal acoustic thermometry: 1960, 2004.</a>
79    Deep-Sea Res. I, 86, 1-20.
80  </li></ul>  </li></ul>
81    
82  <ul><li>  <ul><li>
83  B. Dushaw and D. Menemenlis, 2013: Antipodal acoustic thermometry: 1960,  S. Gao, T. Qu, and X. Nie, 2014: Mixed layer salinity budget in the tropical
84  2004. Deep-Sea Rese. I, in press.  Pacific Ocean estimated by a global GCM. J. Geophys. Res., 119, 8255-8270.
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88  A. Kalmikov and P. Heimbach, 2013: A Hessian-based method for Uncertainty  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
89    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
90    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
91    </ul></li>
92    
93    <ul><li>
94    A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
95  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
96  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
97    </li></ul>
98    
99    <ul><li>
100    J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
101    G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
102    2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
103    Carbon monitoring system flux estimation and attribution: Impact of
104    ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
105    sources and sinks.</a> Tellus B, 66, 22486.
106  </li></ul>  </li></ul>
107    
108  <ul><li>  <ul><li>
109  M. Morlighem, E. Rignot, J. Mouginot, X. Wu, H. Seroussi, E. Larour, and  M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
110  J. Paden, 2013: Bed topography of Russell Glacier, Greenland, inferred from  <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
111  mass conservation using Operation IceBridge data. J. Glaciol., submitted.  Ocean state estimation from hydrography and velocity observations
112    during EIFEX with a regional biogeochemical ocean circulation
113    model.</a> J. Mar. Syst., 129, 437-451.
114  </li></ul>  </li></ul>
115    
116  <ul><li>  <ul><li>
117  M. Morlighem, H. Seroussi, E. Larour and E. Rignot, 2013: Inversion of basal  C. Piecuch, I. Fukumori, R. Ponte and O. Wang, 2014: Vertical Structure of
118  friction in Antarctica using exact and incomplete adjoints of a higher-order  Ocean Pressure Variations with Application to Satellite-Gravimetric
119  model, J. Geophys. Res., submitted.  Observations. Journal of Atmospheric and Oceanic Technology, 32, 603-613.
120  </li></ul>  </li></ul>
121    
122  <ul><li>  <ul><li>
123  F. Roquet, C. Wunsch, G. Forget, P. Heimbach, et al., 2013:  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
124  On the contribution of seal hydrographic data to the Southern Ocean Observing  level change.  J. Clim., 27, 824-834.
125  System. Proc. Natl. Acad. Sci. USA, submitted.  </li></ul>
126    
127    <ul><li>
128    R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
129    in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
130    44, 1456-1465.
131    </li></ul>
132    
133    <ul><li>
134    R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
135    of periodic intermediary flows on submarine melting of a Greenland glacier.
136    J. Geophys. Res., 119, 7078-7098.
137    </ul></li>
138    
139    <ul><li>
140    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
141    M. Schodlok, and A. Khazendar,
142    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
143    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
144    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
145    1699-1710.
146    </li></ul>
147    
148    <ul><li>
149    S. Tett, T. Sherwin, A. Shravat, and O. Browne, 2014: How Much Has the North
150    Atlantic Ocean Overturning Circulation Changed in the Last 50 Years? Journal
151    of Climate, 27, 6325-6342.
152    </ul></li>
153    
154    <ul><li>
155    N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
156    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
157    data into climate models. J. Geophys. Res., 119, 4732-4744.
158  </li></ul>  </li></ul>
159    
160  <ul><li>  <ul><li>
161  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2013: Sea ice  B. Webber, A. Matthews, K. Heywood, J. Kaiser and S. Schmidtko, 2014:
162  deformation in a coupled ocean-sea ice model and in satellite remote  Seaglider observations of equatorial Indian Ocean Rossby waves associated with
163  sensing data. J. Geophys. Res., submitted.  the Madden-Julian Oscillation. J. Geophys. Res., 119, 3714-3731.
164  </li></ul>  </li></ul>
165    
166  <ul><li>  <ul><li>
167  C. Wortham and C. Wunsch, 2013: A multi-dimensional spectral description of  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
168  ocean variability, submitted.  ocean variability, J. Phys. Oceanogr., 44, 944-966.
169  </li></ul>  </li></ul>
170    
171  <ul><li>  <ul><li>
172  C. Wunsch, 2013: Bidecadal thermal changes in the abyssal ocean and the  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
173  observational challenge, submitted.  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
174  </li></ul>  </li></ul>

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22