/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.15 by dimitri, Fri Oct 3 15:51:43 2014 UTC revision 1.27 by dimitri, Mon Jul 20 13:45:19 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://www.ocean-sci.net/10/923/2014/os-10-923-2014.html">
4  </li></ul>  Assessment of the representation of Antarctic Bottom Water properties in the
5    ECCO2 reanalysis.</a> Ocean Sci., 10, 923-946.
 <ul><li>  
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, Journal of Climate, in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18    </li></ul>
19    
20    <ul><li>
21    R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  G. Danabasoglu, et al., 2014: North Atlantic simulations in  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
31  I: Mean states. Ocean Modelling, 73, 76-107.  </ul></li>
32    
33    <ul><li>
34    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36    states. Ocean Modelling, 73, 76-107.
37    </li></ul>
38    
39    <ul><li>
40    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42    Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45    </ul></li>
46    
47    <ul><li>
48    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49    melt rates in a general circulation model: velocity-dependent transfer and the
50    role of friction.  J. Geophys. Res., 119, 1765-1790.
51    </ul></li>
52    
53    <ul><li>
54    
55    T. Dotto, R. Kerr, M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt,
56    2014: <a href="http://www.ocean-sci.net/10/523/2014/os-10-523-2014.html">
57    Assessment of the structure and variability of Weddell Sea water masses in
58    distinct ocean reanalysis products.</a> Ocean Sci., 10, 523-546.
59  </li></ul>  </li></ul>
60    
61  <ul><li>  <ul><li>
# Line 46  Deep-Sea Res. I, 86, 1-20. Line 74  Deep-Sea Res. I, 86, 1-20.
74  </li></ul>  </li></ul>
75    
76  <ul><li>  <ul><li>
77  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
78  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
79  Role of tides on the formation of the Antarctic Slope Front at the  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
80  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  </ul></li>
 </li></ul>  
   
 <ul><li>  
 D. Halpern, D. Menemenlis, and X. Wang,  
 2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  
 Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  
 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  
 Tech., in press.  
 </li></ul>  
81    
82  <ul><li>  <ul><li>
83  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
84  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
85  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
86  </li></ul>  </li></ul>
87    
88  <ul><li>  <ul><li>
89  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
90  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
91  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
92  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
93  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 84  model.</a> J. Mar. Syst., 129, 437-451. Line 103  model.</a> J. Mar. Syst., 129, 437-451.
103  </li></ul>  </li></ul>
104    
105  <ul><li>  <ul><li>
106  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
107  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  level change.  J. Clim., 27, 824-834.
 2014: Quantifying the observability of CO2 flux uncertainty in  
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
108  </li></ul>  </li></ul>
109    
110  <ul><li>  <ul><li>
111  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
112  level change.  J. Clim., in press.  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
113    44, 1456-1465.
114  </li></ul>  </li></ul>
115    
116  <ul><li>  <ul><li>
117  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
118  deformation in a coupled ocean-sea ice model and in satellite remote  of periodic intermediary flows on submarine melting of a Greenland glacier.
119  sensing data. J. Geophys. Res., submitted.  J. Geophys. Res., 119, 7078-7098.
120  </li></ul>  </ul></li>
121    
122  <ul><li>  <ul><li>
123  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
124  ocean variability, J. Phys. Oceanogr., 44, 944-966.  M. Schodlok, and A. Khazendar,
125    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
126    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
127    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
128    1699-1710.
129  </li></ul>  </li></ul>
130    
131  <ul><li>  <ul><li>
132  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
133  Abyssal Ocean. J. Phys. Oceanogr., in press.  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
134    data into climate models. J. Geophys. Res., 119.
135  </li></ul>  </li></ul>
136    
137  <ul><li>  <ul><li>
138  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
139  I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  ocean variability, J. Phys. Oceanogr., 44, 944-966.
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
140  </li></ul>  </li></ul>
141    
142  <ul><li>  <ul><li>
143  V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
144  and the general circulation: Partitioning wind, buoyancy forcing, and  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 irreversible mixing. J. Phys. Oceanogr., submitted.  
145  </li></ul>  </li></ul>

Legend:
Removed from v.1.15  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22