/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by dimitri, Fri Nov 7 03:23:22 2014 UTC revision 1.26 by dimitri, Fri Jun 5 15:21:36 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
 R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  
 mixing in a circumpolar channel. Ocean Modelling, submitted.  
 </li></ul>  
   
 <ul><li>  
2  M. Azaneu, R. Kerr, and M. Mata,  M. Azaneu, R. Kerr, and M. Mata,
3  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
4  Assessment of the ECCO2 reanalysis on the representation of Antarctic  Assessment of the ECCO2 reanalysis on the representation of Antarctic
# Line 11  Bottom Water properties.</a> Ocean Sci. Line 6  Bottom Water properties.</a> Ocean Sci.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
 H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang,  
 K. Bowman, and H. Zhang, 2014:  
 <a href="http://ecco2.org/manuscripts/2014/Brix2014.pdf"> Using  
 Green's Functions to initialize and adjust a global, eddying ocean  
 biogeochemistry general circulation model.</a> Ocean Modelling,  
 submitted.  
 </li></ul>  
   
 <ul><li>  
9  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  Low-frequency SST and upper-ocean heat content variability in the North  Low-frequency SST and upper-ocean heat content variability in the North
11  Atlantic. J. Clim., in revision.  Atlantic. J. Clim., 27, 4996-5018.
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  atmospheric reanalysis products for the Arctic Ocean and implications  atmospheric reanalysis products for the Arctic Ocean and implications
17  for uncertainties in air-sea fluxes, Journal of Climate, in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18    </li></ul>
19    
20    <ul><li>
21    R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  G. Danabasoglu, et al., 2014: North Atlantic simulations in  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30  Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part  Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
31  I: Mean states. Ocean Modelling, 73, 76-107.  </ul></li>
32    
33    <ul><li>
34    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36    states. Ocean Modelling, 73, 76-107.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40    G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42    Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45    </ul></li>
46    
47    <ul><li>
48    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49    melt rates in a general circulation model: velocity-dependent transfer and the
50    role of friction.  J. Geophys. Res., 119, 1765-1790.
51    </ul></li>
52    
53    <ul><li>
54  B. Dushaw, 2014:  B. Dushaw, 2014:
55  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">  <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
56  Assessing the horizontal refraction of ocean acoustic tomography  Assessing the horizontal refraction of ocean acoustic tomography
# Line 53  Deep-Sea Res. I, 86, 1-20. Line 66  Deep-Sea Res. I, 86, 1-20.
66  </li></ul>  </li></ul>
67    
68  <ul><li>  <ul><li>
69  M. Flexas, M. Schodlok, L. Padman, D. Menemenlis, and A. Orsi, 2014:  P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
70  <a href="http://ecco2.org/manuscripts/2014/Flexas2014.pdf">  International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
71  Role of tides on the formation of the Antarctic Slope Front at the  <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
72  Weddell-Scotia Confluence.</a> J. Geophys. Res., submitted.  </ul></li>
 </li></ul>  
   
 <ul><li>  
 D. Halkides, D. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2014:  
 Quantifying the processes controlling intraseasonal mixed-layer  
 temperature variability in the tropical Indian  
 Ocean. J. Geophys. Res., revised.  
 </li></ul>  
73    
74  <ul><li>  <ul><li>
75  D. Halpern, D. Menemenlis, and X. Wang,  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
76  2014: <a href="http://ecco2.org/manuscripts/2014/Halpern2014.pdf">  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
77  Impact of data assimilation on ECCO2 Equatorial Undercurrent and North  (Special Section on Planet Earth and Big Data), 36, S267–S295.
 Equatorial Countercurrent in the Pacific Ocean.</a> J. Atmos. Ocean  
 Tech., in press.  
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
81  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin,
82  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  2014: <a href="http://ecco2.org/manuscripts/2014/Fouest2014.pdf"> Modeling the
83  (Special Section on Planet Earth and Big Data), submitted.  impact of riverine DON removal by marine bacterioplankton on primary
84    production in the Arctic Ocean.</a> Biogeosciences Discuss., 11, 16953–16992.
85  </li></ul>  </li></ul>
86    
87  <ul><li>  <ul><li>
88  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
89  J. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
90  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
91  Carbon monitoring system flux estimation and attribution: Impact of  Carbon monitoring system flux estimation and attribution: Impact of
92  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric  ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
# Line 98  model.</a> J. Mar. Syst., 129, 437-451. Line 102  model.</a> J. Mar. Syst., 129, 437-451.
102  </li></ul>  </li></ul>
103    
104  <ul><li>  <ul><li>
105  L. Ott, S. Pawson, J. Collatz, W. Gregg, D. Menemenlis, H. Brix,  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
106  C. Rousseaux, K. Bowman, J. Liu, A. Eldering, M. Gunson, S. Kawa,  level change.  J. Clim., 27, 824-834.
 2014: Quantifying the observability of CO2 flux uncertainty in  
 atmospheric CO2 records using products from NASA's Carbon Monitoring  
 Flux Pilot Project. J. Geophys. Res., submitted.  
107  </li></ul>  </li></ul>
108    
109  <ul><li>  <ul><li>
110  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
111  level change.  J. Clim., in press.  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
112    44, 1456-1465.
113  </li></ul>  </li></ul>
114    
115  <ul><li>  <ul><li>
116  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
117  deformation in a coupled ocean-sea ice model and in satellite remote  of periodic intermediary flows on submarine melting of a Greenland glacier.
118  sensing data. J. Geophys. Res., submitted.  J. Geophys. Res., 119, 7078-7098.
119  </li></ul>  </ul></li>
120    
121  <ul><li>  <ul><li>
122  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
123  ocean variability, J. Phys. Oceanogr., 44, 944-966.  M. Schodlok, and A. Khazendar,
124    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
125    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
126    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
127    1699-1710.
128  </li></ul>  </li></ul>
129    
130  <ul><li>  <ul><li>
131  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
132  Abyssal Ocean. J. Phys. Oceanogr., in press.  Estimating satellite salinity errors for assimilation of Aquarius and SMOS
133    data into climate models. J. Geophys. Res., 119.
134  </li></ul>  </li></ul>
135    
136  <ul><li>  <ul><li>
137  S. Zedler, C. Jackson, F. Yao, P. Heimbach, A. Koehl, R. Scott, and  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
138  I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent  ocean variability, J. Phys. Oceanogr., 44, 944-966.
 vertical mixing using seasonally averaged observations from the  
 TOGA/TAO array from 2004 to 2007. Ocean Modelling., in revision.  
139  </li></ul>  </li></ul>
140    
141  <ul><li>  <ul><li>
142  V. Zemskova, B. White, and A. Scotti, 2014: Available potential energy  C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
143  and the general circulation: Partitioning wind, buoyancy forcing, and  Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
 irreversible mixing. J. Phys. Oceanogr., submitted.  
144  </li></ul>  </li></ul>

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22