/[MITgcm]/www.ecco-group.org/ecco_2014_pub.html
ViewVC logotype

Diff of /www.ecco-group.org/ecco_2014_pub.html

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by heimbach, Sat Jan 4 05:15:29 2014 UTC revision 1.25 by dimitri, Wed Feb 11 19:30:39 2015 UTC
# Line 1  Line 1 
1  <ul><li>  <ul><li>
2  R. Abernathey, D. Ferreira, and A. Klocker, 2014: Diagnostics of eddy  M. Azaneu, R. Kerr, and M. Mata,
3  mixing in a circumpolar channel. Ocean Modelling, submitted.  2014: <a href="http://ecco2.org/manuscripts/2014/Azaneu2014.pdf">
4    Assessment of the ECCO2 reanalysis on the representation of Antarctic
5    Bottom Water properties.</a> Ocean Sci. Discuss., 11, 1023-1091.
6  </li></ul>  </li></ul>
7    
8  <ul><li>  <ul><li>
9  H. Brix, D. Menemenlis, C. Hill, S. Dutkiewicz, O. Jahn, D. Wang, K. Bowman,  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:
10  and H. Zhang, 2014: Using Green's Functions to initialize and adjust a global,  Low-frequency SST and upper-ocean heat content variability in the North
11  eddying ocean biogeochemistry general circulation model. Ocean Modelling,  Atlantic. J. Clim., 27, 4996-5018.
 submitted.  
12  </li></ul>  </li></ul>
13    
14  <ul><li>  <ul><li>
15  M. Buckley, R. Ponte, G. Forget, and P. Heimbach, 2014:  A. Chaudhuri, R. Ponte, and A. Nguyen, 2014: A comparison of
16  Low-frequency SST and upper-ocean heat content variability in the North  atmospheric reanalysis products for the Arctic Ocean and implications
17  Atlantic. J. Clim., in revision.  for uncertainties in air-sea fluxes, J. Clim., 27, 5411-5421.
18  </li></ul>  </li></ul>
19    
20  <ul><li>  <ul><li>
21  Chaudhuri, A. H., R. M. Ponte, and A. T. Nguyen, 2014: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, Journal of Climate, in revision.  R. Chen, G. Flerl, and C. Wunsch, 2014:
22    <a href="http://ecco2.org/manuscripts/2014/Chen2014.pdf"> A
23    description of local and nonlocal eddy-mean flow interaction in a
24    global eddy-permitting state estimate. </a> J. Phys. Oceanogr., 44,
25    2336-2352.
26  </li></ul>  </li></ul>
27    
28  <ul><li>  <ul><li>
29  Danabasoglu, G., et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean states. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.  H. Dail and C. Wunsch, 2014: Dynamical Reconstruction of Upper-Ocean
30    Conditions in the Last Glacial Maximum Atlantic.  J. Clim., 27, 807–823.
31    </ul></li>
32    
33    <ul><li>
34    G. Danabasoglu, et al., 2014: North Atlantic simulations in Coordinated
35    Ocean-ice Reference Experiments, phase II (CORE-II): Part I: Mean
36    states. Ocean Modelling, 73, 76-107.
37  </li></ul>  </li></ul>
38    
39  <ul><li>  <ul><li>
40  Dansereau, V., P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res., accepted.  G. Danabasoglu, R. Curry, P. Heimbach, Y. Kushnir, C. Meinen, R. Msadek,
41    M. Patterson, L. Thompson, S. Yeager, and R. Zhang, 2014: 2013 US AMOC Science
42    Team Annual Report on Progress and Priorities. 162 pp. <a
43    href="https://usclivar.org/sites/default/files/amoc/2014/USAMOC_2013AnnualReport_final.pdf">
44    US CLIVAR Report 2014-4</a>, US CLIVAR Project Office, Washington D.C., 20006.
45    </ul></li>
46    
47    <ul><li>
48    V. Dansereau, P. Heimbach, and M. Losch, 2014: Simulation of sub-ice shelf
49    melt rates in a general circulation model: velocity-dependent transfer and the
50    role of friction.  J. Geophys. Res., 119, 1765-1790.
51    </ul></li>
52    
53    <ul><li>
54    B. Dushaw, 2014:
55    <a href="http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4881928?aemail=author">
56    Assessing the horizontal refraction of ocean acoustic tomography
57    signals using high-resolution ocean state estimates.</a>
58    Acoust. Soc. Am., 136, 122.
59  </li></ul>  </li></ul>
60    
61  <ul><li>  <ul><li>
62  B. Dushaw and D. Menemenlis, 2014:  B. Dushaw and D. Menemenlis, 2014:
63  <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">  <a href="http://ecco2.org/manuscripts/2014/Dushaw2014.pdf">
64  Antipodal acoustic thermometry: 1960, 2004.</a>  Antipodal acoustic thermometry: 1960, 2004.</a>
65  Deep-Sea Res. I, in press.  Deep-Sea Res. I, 86, 1-20.
66  </li></ul>  </li></ul>
67    
68  <ul><li>  <ul><li>
69    P. Heimbach, F. Straneo, O. Sergienko, and G. Hamilton, 2014:
70    International workshop on understanding the response of Greenlands marine-terminating glaciers to oceanic and atmospheric forcing: Challenges to improving observations, process understanding and modeling. June 4-7, 2013, Beverly, MA, USA.
71    <a href="http://www.usclivar.org/sites/default/files/documents/2014/2013GRISOWorkshopReport_v2_0.pdf">US CLIVAR Report 2014-1</a>, US CLIVAR Project Office, Washington DC, 20006.
72    </ul></li>
73    
74    <ul><li>
75  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty  A. Kalmikov and P. Heimbach, 2014: A Hessian-based method for Uncertainty
76  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing  Quantification in Global Ocean State Estimation. SIAM J. Scientific Computing
77  (Special Section on Planet Earth and Big Data), submitted.  (Special Section on Planet Earth and Big Data), 36, S267–S295.
78  </li></ul>  </li></ul>
79    
80  <ul><li>  <ul><li>
81  M. Morlighem, E. Rignot, J. Mouginot, X. Wu, H. Seroussi, E. Larour, and  J. Liu, K. Bowman, M. Lee, D. Henze, N. Bousserez, H. Brix,
82  J. Paden, 2014: Bed topography of Russell Glacier, Greenland, inferred from  G. Collatz, D. Menemenlis, L. Ott, S. Pawson, D. Jones, and R. Nassar,
83  mass conservation using Operation IceBridge data. J. Glaciol., submitted.  2014: <a href="http://www.tellusb.net/index.php/tellusb/article/view/22486">
84    Carbon monitoring system flux estimation and attribution: Impact of
85    ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric
86    sources and sinks.</a> Tellus B, 66, 22486.
87  </li></ul>  </li></ul>
88    
89  <ul><li>  <ul><li>
90  M. Morlighem, H. Seroussi, E. Larour and E. Rignot, 2014: Inversion of basal  M. Losch, V. Strass, B. Cisewski, C. Klaas, and R. Bellerby, 2014:
91  friction in Antarctica using exact and incomplete adjoints of a higher-order  <a href="http://ecco2.org/manuscripts/2014/Losch2014.pdf">
92  model, J. Geophys. Res., submitted.  Ocean state estimation from hydrography and velocity observations
93    during EIFEX with a regional biogeochemical ocean circulation
94    model.</a> J. Mar. Syst., 129, 437-451.
95  </li></ul>  </li></ul>
96    
97  <ul><li>  <ul><li>
98  Piecuch, C. G., and R. M. Ponte, 2014:  Mechanisms of global mean steric sea level change.  J. Clim., in press.  C. Piecuch and R. Ponte, 2014: Mechanisms of global mean steric sea
99    level change.  J. Clim., 27, 824-834.
100  </li></ul>  </li></ul>
101    
102  <ul><li>  <ul><li>
103  G. Spreen, R. Kwok, D. Menemenlis, and A. Nguyen, 2014: Sea ice  R. Ponte, and C. Piecuch, 2014: Interannual bottom pressure signals
104  deformation in a coupled ocean-sea ice model and in satellite remote  in the Australian-Antarctic and Bellingshausen Basins. J. Phys. Oceanogr.,
105  sensing data. J. Geophys. Res., submitted.  44, 1456-1465.
106  </li></ul>  </li></ul>
107    
108  <ul><li>  <ul><li>
109  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of  R. Sciascia, C. Cenedese, D. Nicoli, P. Heimbach, and F. Straneo, 2014: Impact
110  ocean variability, submitted.  of periodic intermediary flows on submarine melting of a Greenland glacier.
111    J. Geophys. Res., 119, 7078-7098.
112    </ul></li>
113    
114    <ul><li>
115    H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour,
116    M. Schodlok, and A. Khazendar,
117    2014: <a href="http://ecco2.org/manuscripts/2014/Seroussi2014.pdf">
118    Sensitivity of the dynamics of Pine Island Glacier, West Antarctica,
119    to climate forcing for the next 50 years.</a> The Cryosphere, 8,
120    1699-1710.
121  </li></ul>  </li></ul>
122    
123  <ul><li>  <ul><li>
124  Wunsch, C., G. Forget, and P. Heimbach, 2013: Bidecadal Thermal Changes in the Abyssal Ocean. J. Phys. Oceanogr., submitted.  N. Vinogradova,  R. Ponte, I. Fukumori, and O. Wang, 2014:
125    Estimating satellite salinity errors for assimilation of Aquarius and SMOS
126    data into climate models. J. Geophys. Res., 119.
127  </li></ul>  </li></ul>
128    
129  <ul><li>  <ul><li>
130  Zedler, S., C.S. Jackson, F. Yao, P. Heimbach, A. Koehl, R.B. Scott, and I. Hoteit, 2013: Tests of the K-Profile Parameterization of turbulent vertical mixing using seasonally averaged observations from the TOGA/TAO array from 2004 to 2007. Ocean Modelling., submitted.  C. Wortham and C. Wunsch, 2014: A multi-dimensional spectral description of
131    ocean variability, J. Phys. Oceanogr., 44, 944-966.
132  </li></ul>  </li></ul>
133    
134    <ul><li>
135    C. Wunsch and P. Heimbach, 2014: Bidecadal Thermal Changes in the
136    Abyssal Ocean. J. Phys. Oceanogr., 44, 2013-2030.
137    </li></ul>

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22